Page 91 - Read Online
P. 91

Nagwade et al. Soft Sci 2023;3:24  https://dx.doi.org/10.20517/ss.2023.12       Page 25 of 25

                    DOI
               119.      Fatayerji HR, Saeed M, Qaisar SM, Alqurashi A, Al Talib R. Application of wavelet decomposition and ma-chine learning for the
                    semg signal based ges-ture recognition. In: Qaisar SM, Nisar H, Subasi A, editors. Advances in Non-Invasive Biomedical Signal
                    Sensing and Processing with Machine Learning. Cham: Springer International Publishing; 2023. pp. 133-58.  DOI
               120.      Dong P, Song Y, Yu S, et al. Electromyogram-based lip-reading via unobtrusive dry electrodes and machine learning methods. Small
                    2023;19:e2205058.  DOI  PubMed
               121.      Bi Z, Wang Y, Wang H, et al. Wearable EMG bridge-a multiple-gesture reconstruction system using electrical stimulation controlled
                    by the volitional surface electromyogram of a healthy forearm. IEEE Access 2020;8:137330-41.  DOI
               122.      Wei Y, Yang K, Browne M, Bostan L, Worsley P. Wearable electrical stimulation to improve lymphatic function. IEEE Sens Lett
                    2019;3:1-4.  DOI
               123.      Ohm Y, Pan C, Ford MJ, Huang X, Liao J, Majidi C. An electrically conductive silver-polyacrylamide-alginate hydrogel composite
                    for soft electronics. Nat Electron 2021;4:185-92.  DOI
               124.      Botzanowski B, Donahue MJ, Ejneby MS, et al. Noninvasive stimulation of peripheral nerves using temporally-interfering electrical
                    fields. Adv Healthc Mater 2022;11:e2200075.  DOI
               125.      Wang J, Wang H, He T, He B, Thakor NV, Lee C. Investigation of low-current direct stimulation for rehabilitation treatment related
                    to muscle function loss using self-powered TENG system. Adv Sci 2019;6:1900149.  DOI  PubMed  PMC
   86   87   88   89   90   91   92   93   94   95   96