Page 91 - Read Online
P. 91
Nagwade et al. Soft Sci 2023;3:24 https://dx.doi.org/10.20517/ss.2023.12 Page 25 of 25
DOI
119. Fatayerji HR, Saeed M, Qaisar SM, Alqurashi A, Al Talib R. Application of wavelet decomposition and ma-chine learning for the
semg signal based ges-ture recognition. In: Qaisar SM, Nisar H, Subasi A, editors. Advances in Non-Invasive Biomedical Signal
Sensing and Processing with Machine Learning. Cham: Springer International Publishing; 2023. pp. 133-58. DOI
120. Dong P, Song Y, Yu S, et al. Electromyogram-based lip-reading via unobtrusive dry electrodes and machine learning methods. Small
2023;19:e2205058. DOI PubMed
121. Bi Z, Wang Y, Wang H, et al. Wearable EMG bridge-a multiple-gesture reconstruction system using electrical stimulation controlled
by the volitional surface electromyogram of a healthy forearm. IEEE Access 2020;8:137330-41. DOI
122. Wei Y, Yang K, Browne M, Bostan L, Worsley P. Wearable electrical stimulation to improve lymphatic function. IEEE Sens Lett
2019;3:1-4. DOI
123. Ohm Y, Pan C, Ford MJ, Huang X, Liao J, Majidi C. An electrically conductive silver-polyacrylamide-alginate hydrogel composite
for soft electronics. Nat Electron 2021;4:185-92. DOI
124. Botzanowski B, Donahue MJ, Ejneby MS, et al. Noninvasive stimulation of peripheral nerves using temporally-interfering electrical
fields. Adv Healthc Mater 2022;11:e2200075. DOI
125. Wang J, Wang H, He T, He B, Thakor NV, Lee C. Investigation of low-current direct stimulation for rehabilitation treatment related
to muscle function loss using self-powered TENG system. Adv Sci 2019;6:1900149. DOI PubMed PMC

