Page 90 - Read Online
P. 90

Page 24 of 25                        Nagwade et al. Soft Sci 2023;3:24  https://dx.doi.org/10.20517/ss.2023.12

               89.       Tseghai GB, Malengier B, Fante KA, Langenhove L Van. The status of textile-based dry EEG electrodes. 2021;21:63-70.  DOI
               90.       He G, Dong X, Qi M. From the perspective of material science: a review of flexible electrodes for brain-computer interface. Mater
                    Res Express 2020;7:102001.  DOI
               91.       Stevenson C, Chang Y, He C, et al. Emerging non-invasive brain-computer interface technologies and their clinical applications. In:
                    Chaurasia, M.A., Juang, CF , editors. Emerging IT/ICT and AI technologies affecting society. Singaporer: Springer; 2023. p. 269-90.
                    DOI
               92.       Dupre A, Vincent S, Iaizzo PA. Basic ECG theory, recordings, and interpretation. In: Iaizzo PA, editor. Handbook of Cardiac
                    Anatomy, Physiology, and Devices. Totowa, NJ: Humana Press; 2005. p. 191-201.  DOI
               93.       Frederiks J, Swenne CA, Kors JA, et al. Within-subject electrocardiographic differences at equal heart rates: role of the autonomic
                    nervous system. Pflugers Arch 2001;441:717-24.  DOI
               94.       Park C, Youn I, Han S. Single-lead ECG based autonomic nervous system assessment for meditation monitoring. Sci Rep
                    2022;12:22513.  DOI  PubMed  PMC
               95.       Madona P, Basti RI, Zain MM. PQRST wave detection on ECG signals. Gac Sanit 2021;35 Suppl 2:S364-9.  DOI  PubMed
               96.       AlGhatrif M, Lindsay J. A brief review: history to understand fundamentals of electrocardiography. J Community Hosp Intern Med
                    Perspect 2012;2:14383.  DOI  PubMed  PMC
               97.       Martis RJ, Acharya UR, Adeli H. Current methods in electrocardiogram characterization. Comput Biol Med 2014;48:133-49.  DOI
                    PubMed
               98.       Ramasamy S, Balan A. Wearable sensors for ECG measurement: a review. Sensor Review 2018;38:412-9.  DOI
               99.       Strik M, Ploux S, Weigel D, et al. The use of smartwatch electrocardiogram beyond arrhythmia detection. Trends Cardiovasc Med
                    ;2023:S1050-1738(22)00153.  DOI
               100.      Isakadze N, Martin SS. How useful is the smartwatch ECG? Trends Cardiovasc Med 2020;30:442-8.  DOI  PubMed
               101.      Abt G, Bray J, Benson AC. The validity and inter-device variability of the apple watch™ for measuring maximal heart rate. J Sports
                    Sci 2018;36:1447-52.  DOI  PubMed
               102.      Yu J, Park S, Kwon S, Cho K, Lee H. AI-based stroke disease prediction system using ECG and PPG bio-signals. IEEE Access
                    2022;10:43623-38.  DOI
               103.      Kim T, Park J, Sohn J, Cho D, Jeon S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon
                    nanocomposites for all-in-one ECG electrodes. ACS Nano 2016;10:4770-8.  DOI  PubMed
               104.      Ankhili A, Tao X, Cochrane C, Koncar V, Coulon D, Tarlet JM. Ambulatory evaluation of ECG signals obtained using washable
                    textile-based electrodes made with chemically modified PEDOT:PSS. Sensors 2019;19:416.  DOI  PubMed  PMC
               105.      Creel DJ. Chapter 33 - the electrooculogram. In: Levin KH, Chauvel P, editors. Handbook of Clinical Neurology. 2019. p. 495-9.
                    DOI
               106.      Soundariya RS, Renuga R. Eye movement based emotion recognition using electrooculography. In: 2017 Innovations in Power and
                    Advanced Computing Technologies (i-PACT). 2017 Apr 21-22; Vellore, India.IEEE; 2017. p. 1-5.  DOI
               107.      Usakli AB, Gurkan S, Aloise F, Vecchiato G, Babiloni F. On the use of electrooculogram for efficient human computer interfaces.
                    Comput Intell Neurosci 2010;2010:135629.  DOI  PubMed  PMC
               108.      Choudhari AM, Porwal P, Jonnalagedda V, Mériaudeau F. An electrooculography based human machine interface for wheelchair
                    control. Biocybern Biomed Eng 2019;39:673-85.  DOI
               109.      Ramkumar S, Emayavaramban G, Sathesh Kumar K, Macklin Abraham Navamani J, Maheswari K, Packia Amutha Priya P. Task
                    identification system for elderly paralyzed patients using electrooculography and neural networks. In: Haldorai A, Ramu A,
                    Mohanram S, Onn CC, editors. EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing; 2019 Oct
                    19; Springer, Cham; 2020. p. 151-61.  DOI
               110.      Kumar D, Sharma A. Electrooculogram-based virtual reality game control using blink detection and gaze calibration. In: 2016
                    International Conference on Advances in Computing, Communications and Informatics (ICACCI); 2016 Sep 21-24; Jaipur, India.
                    IEEE;2016. p. 2358-62.  DOI
               111.      Chang WD. Electrooculograms for human-computer interaction: a review. Sensors 2019;19:2690.  DOI  PubMed  PMC
               112.      Won Y, Lee JJ, Shin J, Lee M, Kim S, Gandla S. Biocompatible, transparent, and high-areal-coverage kirigami PEDOT:PSS
                    electrodes for electrooculography-derived human-machine interactions. ACS Sens 2021;6:967-75.  DOI  PubMed
               113.      Ameri SK, Kim M, Kuang IA, et al. Imperceptible electrooculography graphene sensor system for human-robot interface. npj 2D
                    Mater Appl 2018:2.  DOI
               114.      Xiao J, Qu J, Li Y. An electrooculogram-based interaction method and its music-on-demand application in a virtual reality
                    environment. IEEE Access 2019;7:22059-70.  DOI
               115.      Beach C, Karim N, Casson AJ. A graphene-based sleep mask for comfortable wearable eye tracking. In: 2019 41st Annual
                    International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2019 Jul 23-27; Berlin, Germany.
                    IEEE; 2019. p. 6693 6.  DOI
               116.      Liang S, Kuo C, Lee Y, et al. Development of an EOG-based automatic sleep-monitoring eye mask. IEEE Trans Instrum Meas
                    2015;64:2977-85.  DOI
               117.      Li W, Lin K, Chen L, Yang D, Ge Q, Wang Z. Self-powered wireless flexible ionogel wearable devices. ACS Appl Mater Interfaces
                    2023.  DOI
               118.      Wang W, Wang S, Rastak R, et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat Electron 2021;4:143-50.
   85   86   87   88   89   90   91   92   93   94   95