Page 87 - Read Online
P. 87

Nagwade et al. Soft Sci 2023;3:24  https://dx.doi.org/10.20517/ss.2023.12       Page 21 of 25

               REFERENCES
               1.       Gong C. Human-machine interface: design principles of visual information in human-machine interface design. In: 2009 International
                    Conference on Intelligent Human-Machine Systems and Cybernetics; 2009 Aug 26-27; Hangzhou, China. IEEE; 2009. p. 262-5.
                    DOI
               2.       Hristov H, Stavrev S. Generations of human-computer interactions: evolution, tendencies and perspectives. J Phys Conf Ser
                    2022;2339:012009.  DOI
               3.       Francés-Morcillo L, Morer-Camo P, Rodríguez-Ferradas MI, Cazón-Martín A. Wearable design requirements identification and
                    evaluation. Sensors 2020;20:2599.  DOI  PubMed  PMC
               4.       Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human-machine interaction systems: from design to application.
                    Adv Funct Mater 2021;31:2008936.  DOI
               5.       Shi Q, Dong B, He T, et al. Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of
                    things. InfoMat 2020;2:1131-62.  DOI
               6.       Godfrey A, Hetherington V, Shum H, Bonato P, Lovell NH, Stuart S. From A to Z: wearable technology explained. Maturitas
                    2018;113:40-7.  DOI
               7.       Tang G, Shi Q, Zhang Z, He T, Sun Z, Lee C. Hybridized wearable patch as a multi-parameter and multi-functional human-machine
                    interface. Nano Energy 2021;81:105582.  DOI
               8.       Park S, Jayaraman S. Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag 2003;22:41-8.  DOI
                    PubMed
               9.       Zhu M, Sun Z, Zhang Z, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented
                    reality applications. Sci Adv 2020;6:eaaz8693.  DOI  PubMed  PMC
               10.       Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.
                    Nature 2016;529:509-14.  DOI  PubMed  PMC
               11.       Bifulco P, Cesarelli M, Fratini A, Ruffo M, Pasquariello G, Gargiulo G. A wearable device for recording of biopotentials and body
                    movements. In: 2011 IEEE International Symposium on Medical Measurements and Applications; 2011 May 30-31; Bari, Italy.
                    IEEE; 2011. p. 469-72.  DOI
               12.       In: Vehkaoja A, Lekkala J, editors. . Wearable wireless biopotential measurement device. Proceedings of 26th annual international
                    conference of the IEEE engineering in medicine and biology society; 2004 Feb p. 2177-9; San Francisco, CA, USA. IEEE; 2004.
                    DOI
               13.       Cinar E, Sahin F. EOG controlled mobile robot using radial basis function networks. In: 2009 Fifth International Conference on Soft
                    Computing, Computing with Words and Perceptions in System Analysis, Decision and Control; 2009 Feb 2-4; Famagusta . North
                    Cyprus. IEEE; 2009. p. 1-4.  DOI
               14.       Sasaki M, Matsushita K, Rusyidi MI, et al. Robot control systems using bio-potential signals. AIP Conf Proc 2020;2217:020008.
                    DOI
               15.       Ding J, Tang Y, Zhang L, Yan F, Gu X, Wu R. A novel front-end design for bioelectrical signal wearable acquisition. IEEE Sensors J
                    2019;19:8009-18.  DOI
               16.       Magno M, Benini L, Spagnol C, Popovici E. Wearable low power dry surface wireless sensor node for healthcare monitoring
                    application. In: 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications
                    (WiMob); 2013 Oct 7-9; Lyon, France.IEEE; 2013. p. 189-95.  DOI
               17.       Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci 2017;40:208-18.  DOI  PubMed
               18.       Waldert S. Invasive vs. Non-invasive neuronal signals for brain-machine interfaces: will one prevail? Front Neuros 2016;10:295.
                    DOI  PubMed  PMC
               19.       Reilly RB, Lee TC. Electrograms (ECG, EEG, EMG, EOG). Technol Health Care 2010;18:443-58.  DOI  PubMed
               20.       Pascual-Valdunciel A, Rajagopal A, Pons JL, Delp S. Non-invasive electrical stimulation of peripheral nerves for the management of
                    tremor. J Neurol Sci 2022;435:120195.  DOI  PubMed  PMC
               21.       Koutsou AD, Moreno JC, Del Ama AJ, Rocon E, Pons JL. Advances in selective activation of muscles for non-invasive motor
                    neuroprostheses. J Neuroeng Rehabil 2016;13:56.  DOI  PubMed  PMC
               22.       Caramenti M, Bartenbach V, Gasperotti L, Oliveira da Fonseca L, Berger TW, Pons JL. Challenges in neurorehabilitation and neural
                    engineering. In: Pons JL, Raya R, González J, editors. Emerging Therapies in Neurorehabilitation II. Cham: Springer International
                    Publishing; 2016. pp. 1-27.  DOI
               23.       Lee S, Kruse J. Biopotential electrode sensors in ECG/EEG/EMG systems. Analog Devices 2008;200:1 2. Available from: https://
                    www.analog.com/en/technical-articles/biopotential-electrode-sensors-ecg-eeg-emg.html#/. [Last accessed on 21 Jun].
               24.       Picton T, Bentin S, Berg P, et al. Guidelines for using human event-related potentials to study cognition: recording standards and
                    publication criteria. Psychophysiol 2000;37:127-52.  DOI
               25.       Albulbul  A.  Evaluating  major  electrode  types  for  idle  biological  signal  measurements  for  modern  medical  technology.
                    Bioengineering 2016;3:20.  DOI  PubMed  PMC
               26.       Bao S, Gia TN, Chen W, Westerlund T. Wearable health monitoring system using flexible materials electrodes. In: 2020 IEEE 6th
                    World Forum on Internet of Things (WF-IoT); 2020 Jun 2-16; New Orleans, LA, USA. IEEE; 2020. p. 1-2.  DOI
               27.       Lopez-Gordo MA, Sanchez-Morillo D, Pelayo Valle F. Dry EEG electrodes. Sensors 2014;14:12847-70.  DOI  PubMed  PMC
               28.       Fu Y, Zhao J, Dong Y, Wang X. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020;20:3651.  DOI  PubMed
   82   83   84   85   86   87   88   89   90   91   92