Page 87 - Read Online
P. 87
Nagwade et al. Soft Sci 2023;3:24 https://dx.doi.org/10.20517/ss.2023.12 Page 21 of 25
REFERENCES
1. Gong C. Human-machine interface: design principles of visual information in human-machine interface design. In: 2009 International
Conference on Intelligent Human-Machine Systems and Cybernetics; 2009 Aug 26-27; Hangzhou, China. IEEE; 2009. p. 262-5.
DOI
2. Hristov H, Stavrev S. Generations of human-computer interactions: evolution, tendencies and perspectives. J Phys Conf Ser
2022;2339:012009. DOI
3. Francés-Morcillo L, Morer-Camo P, Rodríguez-Ferradas MI, Cazón-Martín A. Wearable design requirements identification and
evaluation. Sensors 2020;20:2599. DOI PubMed PMC
4. Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human-machine interaction systems: from design to application.
Adv Funct Mater 2021;31:2008936. DOI
5. Shi Q, Dong B, He T, et al. Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of
things. InfoMat 2020;2:1131-62. DOI
6. Godfrey A, Hetherington V, Shum H, Bonato P, Lovell NH, Stuart S. From A to Z: wearable technology explained. Maturitas
2018;113:40-7. DOI
7. Tang G, Shi Q, Zhang Z, He T, Sun Z, Lee C. Hybridized wearable patch as a multi-parameter and multi-functional human-machine
interface. Nano Energy 2021;81:105582. DOI
8. Park S, Jayaraman S. Enhancing the quality of life through wearable technology. IEEE Eng Med Biol Mag 2003;22:41-8. DOI
PubMed
9. Zhu M, Sun Z, Zhang Z, et al. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented
reality applications. Sci Adv 2020;6:eaaz8693. DOI PubMed PMC
10. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis.
Nature 2016;529:509-14. DOI PubMed PMC
11. Bifulco P, Cesarelli M, Fratini A, Ruffo M, Pasquariello G, Gargiulo G. A wearable device for recording of biopotentials and body
movements. In: 2011 IEEE International Symposium on Medical Measurements and Applications; 2011 May 30-31; Bari, Italy.
IEEE; 2011. p. 469-72. DOI
12. In: Vehkaoja A, Lekkala J, editors. . Wearable wireless biopotential measurement device. Proceedings of 26th annual international
conference of the IEEE engineering in medicine and biology society; 2004 Feb p. 2177-9; San Francisco, CA, USA. IEEE; 2004.
DOI
13. Cinar E, Sahin F. EOG controlled mobile robot using radial basis function networks. In: 2009 Fifth International Conference on Soft
Computing, Computing with Words and Perceptions in System Analysis, Decision and Control; 2009 Feb 2-4; Famagusta . North
Cyprus. IEEE; 2009. p. 1-4. DOI
14. Sasaki M, Matsushita K, Rusyidi MI, et al. Robot control systems using bio-potential signals. AIP Conf Proc 2020;2217:020008.
DOI
15. Ding J, Tang Y, Zhang L, Yan F, Gu X, Wu R. A novel front-end design for bioelectrical signal wearable acquisition. IEEE Sensors J
2019;19:8009-18. DOI
16. Magno M, Benini L, Spagnol C, Popovici E. Wearable low power dry surface wireless sensor node for healthcare monitoring
application. In: 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob); 2013 Oct 7-9; Lyon, France.IEEE; 2013. p. 189-95. DOI
17. Cohen MX. Where does EEG come from and what does it mean? Trends Neurosci 2017;40:208-18. DOI PubMed
18. Waldert S. Invasive vs. Non-invasive neuronal signals for brain-machine interfaces: will one prevail? Front Neuros 2016;10:295.
DOI PubMed PMC
19. Reilly RB, Lee TC. Electrograms (ECG, EEG, EMG, EOG). Technol Health Care 2010;18:443-58. DOI PubMed
20. Pascual-Valdunciel A, Rajagopal A, Pons JL, Delp S. Non-invasive electrical stimulation of peripheral nerves for the management of
tremor. J Neurol Sci 2022;435:120195. DOI PubMed PMC
21. Koutsou AD, Moreno JC, Del Ama AJ, Rocon E, Pons JL. Advances in selective activation of muscles for non-invasive motor
neuroprostheses. J Neuroeng Rehabil 2016;13:56. DOI PubMed PMC
22. Caramenti M, Bartenbach V, Gasperotti L, Oliveira da Fonseca L, Berger TW, Pons JL. Challenges in neurorehabilitation and neural
engineering. In: Pons JL, Raya R, González J, editors. Emerging Therapies in Neurorehabilitation II. Cham: Springer International
Publishing; 2016. pp. 1-27. DOI
23. Lee S, Kruse J. Biopotential electrode sensors in ECG/EEG/EMG systems. Analog Devices 2008;200:1 2. Available from: https://
www.analog.com/en/technical-articles/biopotential-electrode-sensors-ecg-eeg-emg.html#/. [Last accessed on 21 Jun].
24. Picton T, Bentin S, Berg P, et al. Guidelines for using human event-related potentials to study cognition: recording standards and
publication criteria. Psychophysiol 2000;37:127-52. DOI
25. Albulbul A. Evaluating major electrode types for idle biological signal measurements for modern medical technology.
Bioengineering 2016;3:20. DOI PubMed PMC
26. Bao S, Gia TN, Chen W, Westerlund T. Wearable health monitoring system using flexible materials electrodes. In: 2020 IEEE 6th
World Forum on Internet of Things (WF-IoT); 2020 Jun 2-16; New Orleans, LA, USA. IEEE; 2020. p. 1-2. DOI
27. Lopez-Gordo MA, Sanchez-Morillo D, Pelayo Valle F. Dry EEG electrodes. Sensors 2014;14:12847-70. DOI PubMed PMC
28. Fu Y, Zhao J, Dong Y, Wang X. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020;20:3651. DOI PubMed

