Page 88 - Read Online
P. 88

Page 22 of 25                        Nagwade et al. Soft Sci 2023;3:24  https://dx.doi.org/10.20517/ss.2023.12

                    PMC
               29.       Herbert R, Jeong JW, Yeo AW. Soft material-enabled electronics for medicine, healthcare, and human-machine interfaces. Materials
                    2020;13:517.  DOI  PubMed  PMC
               30.       Herbert R, Kim JH, Kim YS, Lee HM, Yeo WH. Soft Material-enabled, flexible hybrid electronics for medicine, healthcare, and
                    human-machine interfaces. Materials 2018;11:187.  DOI  PubMed  PMC
               31.       Kim T, Cho M, Yu KJ. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials
                    2018;11:1163.  DOI  PubMed  PMC
               32.       Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.  DOI
               33.       Zhao Y, Hou N, Wang Y, et al. All-fiber structure covered with two-dimensional conductive MOF materials to construct a
                    comfortable, breathable and high-quality self-powered wearable sensor system. J Mater Chem A 2022;10:1248-56.  DOI
               34.       Zheng Y, Yu Z, Zhang S, et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat Commun
                    2021;12:5701.  DOI  PubMed  PMC
               35.       Matsuhisa N, Niu S, O'Neill SJK, et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021;600:246-52.  DOI
               36.       Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic
                    bioelectronics. Science 2022;375:1411-7.  DOI
               37.       Zheng YQ, Liu Y, Zhong D, et al. Monolithic optical microlithography of high-density elastic circuits. Science 2021;373:88-94.  DOI
               38.       Vallem V, Sargolzaeiaval Y, Ozturk M, Lai YC, Dickey MD. Energy harvesting and storage with soft and stretchable materials. Adv
                    Mater 2021;33:e2004832.  DOI  PubMed
               39.       Song Y, Wang N, Hu C, Wang ZL, Yang Y. Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered
                    sensors. Nano Energy 2021;84:105919.  DOI
               40.       Song Y, Min J, Yu Y, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020:6.  DOI  PubMed
                    PMC
               41.       Park Y, Kwon K, Kwak SS, et al. Wireless, skin-interfaced sensors for compression therapy. Sci Adv 2020:6.  DOI  PubMed  PMC
               42.       Kwon YT, Kim H, Mahmood M, Kim YS, Demolder C, Yeo WH. Printed, wireless, soft bioelectronics and deep learning algorithm
                    for smart human-machine interfaces. ACS Appl Mater Interfaces 2020;12:49398-406.  DOI  PubMed
               43.       Wei H, Li K, Liu WG, Meng H, Zhang PX, Yan CY. 3D printing of free-standing stretchable electrodes with tunable structure and
                    stretchability. Adv Eng Mater 2017;19:1700341.  DOI
               44.       Zhou LY, Gao Q, Fu JZ, et al. Multimaterial 3D printing of highly stretchable silicone elastomers. ACS Appl Mater Interfaces
                    2019;11:23573-83.  DOI
               45.       Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater
                    2014;26:6307-12.  DOI
               46.       Zhu Z, Park HS, McAlpine MC. 3D printed deformable sensors. Sci Adv 2020;6:eaba5575.  DOI  PubMed  PMC
               47.       Farina D, Holobar A. Human?machine interfacing by decoding the surface electromyogram [Life Sciences]. IEEE Signal Process
                    Mag 2015;32:115-20.  DOI
               48.       Farina D, Jiang N, Rehbaum H, et al. The extraction of neural information from the surface EMG for the control of upper-limb
                    prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng 2014;22:797-809.  DOI
               49.       Holobar A, Farina D. Noninvasive neural interfacing with wearable muscle sensors: combining convolutive blind source separation
                    methods and deep learning techniques for neural decoding. IEEE Signal Process Mag 2021;38:103-18.  DOI
               50.       Kollmitzer J, Ebenbichler GR, Kopf A. Reliability of surface electromyographic measurements. Clin Neurophysiol 1999;110:725-34.
                    DOI  PubMed
               51.       Yeon SH, Shu T, Rogers EA, et al. Flexible dry electrodes for emg acquisition within lower extremity prosthetic sockets. In: 2020 8th
                    IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). 2020. pp. 1088-95.  DOI
                    PubMed  PMC
               52.       Murphy BB, Mulcahey PJ, Driscoll N, et al. A gel-free Ti C T -based electrode array for high-density, high-resolution surface
                                                             2
                                                               x
                                                           3
                    electromyography. Adv Mater Technol 2020;5:2000325.  DOI  PubMed  PMC
               53.       Driscoll N, Erickson B, Murphy BB, et al. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation.
                    Sci Transl Med 2021;13:eabf8629.  DOI  PubMed  PMC
               54.       Hammock ML, Chortos A, Tee BC, Tok JB, Bao Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history,
                    design considerations, and recent progress. Adv Mater 2013;25:5997-6038.  DOI  PubMed
               55.       Goyal K, Borkholder DA, Day SW. Dependence of skin-electrode contact impedance on material and skin hydration. Sensors
                    2022;22:8510.  DOI  PubMed  PMC
               56.       Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot
                    2022;7:eabn0495.  DOI  PubMed  PMC
               57.       Zeng X, Dong Y, Wang X. Flexible electrode by hydrographic printing for surface electromyography monitoring. Materials
                    2020;13:2339.  DOI  PubMed  PMC
               58.       Motti VG, Caine KE. Human factors considerations in the design of wearable devices. In: Proceedings of the Human Factors and
                    Ergonomics Society Annual Meeting 2014;58:1820-4.  DOI
               59.       Huang C, Chiu C. Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its
                    application in smart clothing for ECG and EMG monitoring. ACS Appl Electron Mater 2021;3:676-86.  DOI
   83   84   85   86   87   88   89   90   91   92   93