Page 88 - Read Online
P. 88
Page 22 of 25 Nagwade et al. Soft Sci 2023;3:24 https://dx.doi.org/10.20517/ss.2023.12
PMC
29. Herbert R, Jeong JW, Yeo AW. Soft material-enabled electronics for medicine, healthcare, and human-machine interfaces. Materials
2020;13:517. DOI PubMed PMC
30. Herbert R, Kim JH, Kim YS, Lee HM, Yeo WH. Soft Material-enabled, flexible hybrid electronics for medicine, healthcare, and
human-machine interfaces. Materials 2018;11:187. DOI PubMed PMC
31. Kim T, Cho M, Yu KJ. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials
2018;11:1163. DOI PubMed PMC
32. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9. DOI
33. Zhao Y, Hou N, Wang Y, et al. All-fiber structure covered with two-dimensional conductive MOF materials to construct a
comfortable, breathable and high-quality self-powered wearable sensor system. J Mater Chem A 2022;10:1248-56. DOI
34. Zheng Y, Yu Z, Zhang S, et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat Commun
2021;12:5701. DOI PubMed PMC
35. Matsuhisa N, Niu S, O'Neill SJK, et al. High-frequency and intrinsically stretchable polymer diodes. Nature 2021;600:246-52. DOI
36. Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic
bioelectronics. Science 2022;375:1411-7. DOI
37. Zheng YQ, Liu Y, Zhong D, et al. Monolithic optical microlithography of high-density elastic circuits. Science 2021;373:88-94. DOI
38. Vallem V, Sargolzaeiaval Y, Ozturk M, Lai YC, Dickey MD. Energy harvesting and storage with soft and stretchable materials. Adv
Mater 2021;33:e2004832. DOI PubMed
39. Song Y, Wang N, Hu C, Wang ZL, Yang Y. Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered
sensors. Nano Energy 2021;84:105919. DOI
40. Song Y, Min J, Yu Y, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020:6. DOI PubMed
PMC
41. Park Y, Kwon K, Kwak SS, et al. Wireless, skin-interfaced sensors for compression therapy. Sci Adv 2020:6. DOI PubMed PMC
42. Kwon YT, Kim H, Mahmood M, Kim YS, Demolder C, Yeo WH. Printed, wireless, soft bioelectronics and deep learning algorithm
for smart human-machine interfaces. ACS Appl Mater Interfaces 2020;12:49398-406. DOI PubMed
43. Wei H, Li K, Liu WG, Meng H, Zhang PX, Yan CY. 3D printing of free-standing stretchable electrodes with tunable structure and
stretchability. Adv Eng Mater 2017;19:1700341. DOI
44. Zhou LY, Gao Q, Fu JZ, et al. Multimaterial 3D printing of highly stretchable silicone elastomers. ACS Appl Mater Interfaces
2019;11:23573-83. DOI
45. Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater
2014;26:6307-12. DOI
46. Zhu Z, Park HS, McAlpine MC. 3D printed deformable sensors. Sci Adv 2020;6:eaba5575. DOI PubMed PMC
47. Farina D, Holobar A. Human?machine interfacing by decoding the surface electromyogram [Life Sciences]. IEEE Signal Process
Mag 2015;32:115-20. DOI
48. Farina D, Jiang N, Rehbaum H, et al. The extraction of neural information from the surface EMG for the control of upper-limb
prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng 2014;22:797-809. DOI
49. Holobar A, Farina D. Noninvasive neural interfacing with wearable muscle sensors: combining convolutive blind source separation
methods and deep learning techniques for neural decoding. IEEE Signal Process Mag 2021;38:103-18. DOI
50. Kollmitzer J, Ebenbichler GR, Kopf A. Reliability of surface electromyographic measurements. Clin Neurophysiol 1999;110:725-34.
DOI PubMed
51. Yeon SH, Shu T, Rogers EA, et al. Flexible dry electrodes for emg acquisition within lower extremity prosthetic sockets. In: 2020 8th
IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob). 2020. pp. 1088-95. DOI
PubMed PMC
52. Murphy BB, Mulcahey PJ, Driscoll N, et al. A gel-free Ti C T -based electrode array for high-density, high-resolution surface
2
x
3
electromyography. Adv Mater Technol 2020;5:2000325. DOI PubMed PMC
53. Driscoll N, Erickson B, Murphy BB, et al. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation.
Sci Transl Med 2021;13:eabf8629. DOI PubMed PMC
54. Hammock ML, Chortos A, Tee BC, Tok JB, Bao Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history,
design considerations, and recent progress. Adv Mater 2013;25:5997-6038. DOI PubMed
55. Goyal K, Borkholder DA, Day SW. Dependence of skin-electrode contact impedance on material and skin hydration. Sensors
2022;22:8510. DOI PubMed PMC
56. Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot
2022;7:eabn0495. DOI PubMed PMC
57. Zeng X, Dong Y, Wang X. Flexible electrode by hydrographic printing for surface electromyography monitoring. Materials
2020;13:2339. DOI PubMed PMC
58. Motti VG, Caine KE. Human factors considerations in the design of wearable devices. In: Proceedings of the Human Factors and
Ergonomics Society Annual Meeting 2014;58:1820-4. DOI
59. Huang C, Chiu C. Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its
application in smart clothing for ECG and EMG monitoring. ACS Appl Electron Mater 2021;3:676-86. DOI

