Page 89 - Read Online
P. 89
Nagwade et al. Soft Sci 2023;3:24 https://dx.doi.org/10.20517/ss.2023.12 Page 23 of 25
60. Li J, Ma Y, Huang D, et al. High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for
wearable electrophysiological recording and polysomnography. Nanomicro Lett 2022;14:132. DOI PubMed PMC
61. Scott SH. Neuroscience: converting thoughts into action. Nature 2006;442:141-2. DOI PubMed
62. Tyagi A, Semwal S, Shah G. A review of EEG sensors used for data acquisition.In: National Conference on Future Aspects of
Artificial intelligence in Industrial Automation (NCFAAIIA 2012), Proceedings published by International Journal of Computer
A p p l i c a t i o n s ® ( I J C A ) , 2 0 1 2 : 1 3 - 7 . A c a i l a b l e f r o m : h t t p s : / / w w w . r e s e a r c h g a t e . n e t / p u b l i c a t i o n /
308259085_A_Review_of_Eeg_Sensors_used_for_Data_Acquisition.[Last accessed on 21 Jun]
63. Ganzer PD, Colachis SC 4th, Schwemmer MA, et al. Restoring the sense of touch using a sensorimotor demultiplexing neural
interface. Cell 2020;181:763-773.e12. DOI
64. Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia.
Nature 2016;533:247-50. DOI
65. McFarland DJ, Sarnacki WA, Wolpaw JR. Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng
2010;7:036007. DOI PubMed PMC
66. McNaughton BL, O'Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the
central nervous system from multiple unit records. J Neurosci Methods 1983;8:391-7. DOI
67. Vidal JJ. Toward direct brain-computer communication. Annu Rev Biophys Bioeng 1973;2:157-80. DOI PubMed
68. Ponce CR, Lomber SG, Livingstone MS. Posterior inferotemporal cortex cells use multiple input pathways for shape encoding. J
Neurosci 2017;37:5019-34. DOI PubMed PMC
69. Huang Z, Zhou Z, Zeng J, Lin S, Wu H. Flexible electrodes for non-invasive brain-computer interfaces: a perspective. APL Materials
2022;10:090901. DOI
70. Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J
Neural Eng 2019;16:011001. DOI PubMed
71. Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors 2012;12:1211-79. DOI PubMed PMC
72. Orban M, Elsamanty M, Guo K, Zhang S, Yang H. A review of brain activity and EEG-Based brain-computer interfaces for
rehabilitation application. Bioengineering 2022;9:768. DOI PubMed PMC
73. Li G, Wang S, Duan YY. Towards conductive-gel-free electrodes: understanding the wet electrode, semi-dry electrode and dry
electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sensor Actuat B-Chem 2018;277:250-60.
DOI
74. Pradhapan P, Velazquez ER, Witteveen JA, Tonoyan Y, Mihajlović V. The role of features types and personalized assessment in
detecting affective state using dry electrode EEG. Sensors 2020;20:6810. DOI PubMed PMC
75. Marini F, Lee C, Wagner J, Makeig S, Gola M. A comparative evaluation of signal quality between a research-grade and a wireless
dry-electrode mobile EEG system. J Neural Eng 2019;16:054001. DOI
76. Baum U, Baum A, Deike R, et al. Eignung eines mobilen trockenelektroden-EEG-Gerätes im Rahmen der Epilepsiediagnostik. Klin
Neurophysiol 2020;51:156-60. DOI
77. Mota A, Duarte L, Rodrigues D, et al. Development of a quasi-dry electrode for EEG recording. Sensor Actuat A-Phys 2013;199:310-
7. DOI
78. Lin S, Liu J, Li W, et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces.
Nano Lett 2019;19:6853-61. DOI
79. Huang K, Liu J, Lin S, et al. Flexible silver nanowire dry electrodes for long-term electrocardiographic monitoring. Adv Compos
Hybrid Mater 2022;5:220-8. DOI
80. Lee JH, Hwang JY, Zhu J, et al. Flexible conductive composite integrated with personal earphone for wireless, real-time monitoring
of electrophysiological signs. ACS Appl Mater Interfaces 2018;10:21184-90. DOI
81. Grozea C, Voinescu CD, Fazli S. Bristle-sensors--low-cost flexible passive dry EEG electrodes for neurofeedback and BCI
applications. J Neural Eng 2011;8:025008. DOI PubMed
82. Wang L, Liu J, Yang B, Yang C. PDMS-based low cost flexible dry electrode for long-term EEG measurement. IEEE Sensors J
2012;12:2898-904. DOI
83. Li G, Wu J, Xia Y, et al. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust
recording of EEG signals at forehead sites. J Neural Eng 2020;17:026001. DOI
84. Golparvar A, Ozturk O, Yapici MK. Gel-free wearable electroencephalography (eeg) with soft graphene textiles. In: 2021 IEEE
Sensors; 2021 31 Oct-3 Nov; Sydney, Australia. IEEE; 2021. p. 1-4. DOI
85. Carneiro MR, de Almeida AT, Tavakoli M. Wearable and comfortable e-textile headband for long-term acquisition of forehead EEG
signals. IEEE Sensors J 2020;20:15107-16. DOI
86. Li G, Zhang D, Wang S, Duan YY. Novel passive ceramic based semi-dry electrodes for recording electroencephalography signals
from the hairy scalp. Sensor Actuat B-Chem 2016;237:167-78. DOI
87. Liu J, Lin S, Li W, et al. Ten-hour stable noninvasive brain-computer interface realized by semidry hydrogel-based electrodes.
Research 2022;2022:9830457. DOI PubMed PMC
88. Krishnan A, Kumar R, Venkatesh P, Kelly S, Grover P. Low-cost carbon fiber-based conductive silicone sponge EEG electrodes. In:
40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2018 Jul 18-21; Honolulu,
HI, USA. IEEE; 2018. p. 1287-90. DOI

