Page 89 - Read Online
P. 89

Nagwade et al. Soft Sci 2023;3:24  https://dx.doi.org/10.20517/ss.2023.12       Page 23 of 25

               60.       Li J, Ma Y, Huang D, et al. High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for
                    wearable electrophysiological recording and polysomnography. Nanomicro Lett 2022;14:132.  DOI  PubMed  PMC
               61.       Scott SH. Neuroscience: converting thoughts into action. Nature 2006;442:141-2.  DOI  PubMed
               62.       Tyagi A, Semwal S, Shah G. A review of EEG sensors used for data acquisition.In: National Conference on Future Aspects of
                    Artificial intelligence in Industrial Automation (NCFAAIIA 2012), Proceedings published by International Journal of Computer
                    A  p p l i c a t i o n s ®     ( I J C A  ) , 2 0 1 2 : 1 3 - 7 .    A  c a i l a b l e    f r o m  :    h t t p s : / / w  w  w  . r e s e a r c h g a t e . n e t / p u b l i c a t i o n /
                    308259085_A_Review_of_Eeg_Sensors_used_for_Data_Acquisition.[Last accessed on 21 Jun]
               63.       Ganzer PD, Colachis SC 4th, Schwemmer MA, et al. Restoring the sense of touch using a sensorimotor demultiplexing neural
                    interface. Cell 2020;181:763-773.e12.  DOI
               64.       Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia.
                    Nature 2016;533:247-50.  DOI
               65.       McFarland DJ, Sarnacki WA, Wolpaw JR. Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng
                    2010;7:036007.  DOI  PubMed  PMC
               66.       McNaughton BL, O'Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the
                    central nervous system from multiple unit records. J Neurosci Methods 1983;8:391-7.  DOI
               67.       Vidal JJ. Toward direct brain-computer communication. Annu Rev Biophys Bioeng 1973;2:157-80.  DOI  PubMed
               68.       Ponce CR, Lomber SG, Livingstone MS. Posterior inferotemporal cortex cells use multiple input pathways for shape encoding. J
                    Neurosci 2017;37:5019-34.  DOI  PubMed  PMC
               69.       Huang Z, Zhou Z, Zeng J, Lin S, Wu H. Flexible electrodes for non-invasive brain-computer interfaces: a perspective. APL Materials
                    2022;10:090901.  DOI
               70.       Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J
                    Neural Eng 2019;16:011001.  DOI  PubMed
               71.       Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors 2012;12:1211-79.  DOI  PubMed  PMC
               72.       Orban M, Elsamanty M, Guo K, Zhang S, Yang H. A review of brain activity and EEG-Based brain-computer interfaces for
                    rehabilitation application. Bioengineering 2022;9:768.  DOI  PubMed  PMC
               73.       Li G, Wang S, Duan YY. Towards conductive-gel-free electrodes: understanding the wet electrode, semi-dry electrode and dry
                    electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sensor Actuat B-Chem 2018;277:250-60.
                    DOI
               74.       Pradhapan P, Velazquez ER, Witteveen JA, Tonoyan Y, Mihajlović V. The role of features types and personalized assessment in
                    detecting affective state using dry electrode EEG. Sensors 2020;20:6810.  DOI  PubMed  PMC
               75.       Marini F, Lee C, Wagner J, Makeig S, Gola M. A comparative evaluation of signal quality between a research-grade and a wireless
                    dry-electrode mobile EEG system. J Neural Eng 2019;16:054001.  DOI
               76.       Baum U, Baum A, Deike R, et al. Eignung eines mobilen trockenelektroden-EEG-Gerätes im Rahmen der Epilepsiediagnostik. Klin
                    Neurophysiol 2020;51:156-60.  DOI
               77.       Mota A, Duarte L, Rodrigues D, et al. Development of a quasi-dry electrode for EEG recording. Sensor Actuat A-Phys 2013;199:310-
                    7.  DOI
               78.       Lin S, Liu J, Li W, et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces.
                    Nano Lett 2019;19:6853-61.  DOI
               79.       Huang K, Liu J, Lin S, et al. Flexible silver nanowire dry electrodes for long-term electrocardiographic monitoring. Adv Compos
                    Hybrid Mater 2022;5:220-8.  DOI
               80.       Lee JH, Hwang JY, Zhu J, et al. Flexible conductive composite integrated with personal earphone for wireless, real-time monitoring
                    of electrophysiological signs. ACS Appl Mater Interfaces 2018;10:21184-90.  DOI
               81.       Grozea C, Voinescu CD, Fazli S. Bristle-sensors--low-cost flexible passive dry EEG electrodes for neurofeedback and BCI
                    applications. J Neural Eng 2011;8:025008.  DOI  PubMed
               82.       Wang L, Liu J, Yang B, Yang C. PDMS-based low cost flexible dry electrode for long-term EEG measurement. IEEE Sensors J
                    2012;12:2898-904.  DOI
               83.       Li G, Wu J, Xia Y, et al. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust
                    recording of EEG signals at forehead sites. J Neural Eng 2020;17:026001.  DOI
               84.       Golparvar A, Ozturk O, Yapici MK. Gel-free wearable electroencephalography (eeg) with soft graphene textiles. In: 2021 IEEE
                    Sensors; 2021 31 Oct-3 Nov; Sydney, Australia. IEEE; 2021. p. 1-4.  DOI
               85.       Carneiro MR, de Almeida AT, Tavakoli M. Wearable and comfortable e-textile headband for long-term acquisition of forehead EEG
                    signals. IEEE Sensors J 2020;20:15107-16.  DOI
               86.       Li G, Zhang D, Wang S, Duan YY. Novel passive ceramic based semi-dry electrodes for recording electroencephalography signals
                    from the hairy scalp. Sensor Actuat B-Chem 2016;237:167-78.  DOI
               87.       Liu J, Lin S, Li W, et al. Ten-hour stable noninvasive brain-computer interface realized by semidry hydrogel-based electrodes.
                    Research 2022;2022:9830457.  DOI  PubMed  PMC
               88.       Krishnan A, Kumar R, Venkatesh P, Kelly S, Grover P. Low-cost carbon fiber-based conductive silicone sponge EEG electrodes. In:
                    40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2018 Jul 18-21; Honolulu,
                    HI, USA. IEEE; 2018. p. 1287-90.  DOI
   84   85   86   87   88   89   90   91   92   93   94