Page 65 - Read Online
P. 65
Page 44 of 44 Jung et al. Soft Sci 2024;4:15 https://dx.doi.org/10.20517/ss.2024.02
277. Deng Y, Lu L, Aponte L, et al. Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes
patients. NPJ Digit Med 2021;4:109. DOI PubMed PMC
278. Bois M, El Yacoubi MA, Ammi M. Adversarial multi-source transfer learning in healthcare: application to glucose prediction for
diabetic people. Comput Methods Programs Biomed 2021;199:105874. DOI PubMed
279. Sankhala D, Sardesai AU, Pali M, et al. A machine learning-based on-demand sweat glucose reporting platform. Sci Rep
2022;12:2442. DOI PubMed PMC
280. Bertachi A, Viñals C, Biagi L, et al. Prediction of nocturnal hypoglycemia in adults with type 1 diabetes under multiple daily
injections using continuous glucose monitoring and physical activity monitor. Sensors 2020;20:1705. DOI PubMed PMC
281. Plis K, Bunescu R, Marling C, Shubrook J, Schwartz F. A machine learning approach to predicting blood glucose levels for diabetes
management. In: Workshops at the Twenty-Eighth AAAI conference on artificial intelligence. 2014. Available from: http://
smarthealth.cs.ohio.edu/pubs/AAAI-WS-2014.pdf. [Last accessed on 15 Apr 2024].
282. Yang J, Li L, Shi Y, Xie X. An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia.
IEEE J Biomed Health Inform 2019;23:1251-60. DOI PubMed
283. Parrilla M, Detamornrat U, Domínguez-Robles J, Tunca S, Donnelly RF, De Wael K. Wearable microneedle-based array patches for
continuous electrochemical monitoring and drug delivery: toward a closed-loop system for methotrexate treatment. ACS Sens
2023;8:4161-70. DOI
284. Teymourian H, Parrilla M, Sempionatto JR, et al. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS
Sens 2020;5:2679-700. DOI
285. Ma R, Shao R, An X, Zhang Q, Sun S. Recent advancements in noninvasive glucose monitoring and closed-loop management
systems for diabetes. J Mater Chem B 2022;10:5537-55. DOI PubMed

