Page 62 - Read Online
P. 62
Jung et al. Soft Sci 2024;4:15 https://dx.doi.org/10.20517/ss.2024.02 Page 41 of 44
186. Lyu Y, Gan S, Bao Y, et al. Solid-contact ion-selective electrodes: response mechanisms, transducer materials and wearable sensors.
Membranes 2020;10:128. DOI PubMed PMC
187. Bakker E, Bühlmann P, Pretsch E. The phase-boundary potential model. Talanta 2004;63:3-20. DOI PubMed
188. Bakker E, Nägele M, Schaller U, Pretsch E. Applicability of the phase boundary potential model to the mechanistic understanding of
solvent polymeric membrane-based ion-selective electrodes. Electroanalysis 1995;7:817-22. DOI
189. Bakker E, Chumbimuni-Torres K. Modern directions for potentiometric sensors. J Braz Chem Soc 2008;19:621-9. DOI PubMed
PMC
190. Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms,
and development trends. Chem Soc Rev 2020;49:4405-65. DOI
191. Janata J, Josowicz M. Nernstian and non-nernstian potentiometry. Solid State Ionics 1997;94:209-15. DOI
192. Migdalski J, Lewenstam A. Electrically enhanced sensitivity (EES) of ion-selective membrane electrodes and membrane-based ion
sensors. Membranes 2022;12:763. DOI PubMed PMC
193. Amemiya S, Bühlmann P, Odashima K. A generalized model for apparently “non-Nernstian” equilibrium responses of ionophore-
based ion-selective electrodes. 1. Independent complexation of the ionophore with primary and secondary ions. Anal Chem
2003;75:3329-39. DOI PubMed
194. Jackson DT, Nelson PN. Preparation and properties of some ion selective membranes: a review. JMol Struct 2019;1182:241-59. DOI
195. Hu J, Stein A, Bühlmann P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal
Chem 2016;76:102-14. DOI
196. Valeri C, Pozzilli P, Leslie D. Glucose control in diabetes. Diabetes Metab Res Rev 2004;20:S1-8. DOI PubMed
197. Musen G, Jacobson AM, Ryan CM, et al; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and
Complications Research Group. Glycemic control and hypoglycemia: is the loser the winner? Response to Perlmuter et al. Diabetes
Care 2009;32:e46. DOI PubMed PMC
198. Militaru A, Frandes M, Lungeanu D. Smart wristbands as inexpensive and reliable non-dedicated solution for self-managing type 2
diabetes. In: 2015 E-Health and Bioengineering Conference (EHB); 2015 Nov 19-21; Iasi, Romania. IEEE; 2015. pp. 1-4. DOI
199. Aslam MW, Zhu Z, Nandi AK. Feature generation using genetic programming with comparative partner selection for diabetes
classification. Expert Syst Appl 2013;40:5402-12. DOI
200. Ozana N, Beiderman Y, Anand A, et al. Noncontact speckle-based optical sensor for detection of glucose concentration using
magneto-optic effect. J Biomed Opt 2016;21:65001. DOI
201. Acharya U, Faust O, Adib Kadri N, Suri JS, Yu W. Automated identification of normal and diabetes heart rate signals using nonlinear
measures. Comput Biol Med 2013;43:1523-9. DOI PubMed
202. Zafar H, Channa A, Jeoti V, Stojanović GM. Comprehensive review on wearable sweat-glucose sensors for continuous glucose
monitoring. Sensors 2022;22:638. DOI PubMed PMC
203. Moyer J, Wilson D, Finkelshtein I, Wong B, Potts R. Correlation between sweat glucose and blood glucose in subjects with diabetes.
Diabetes Technol Ther 2012;14:398-402. DOI PubMed
204. Pullano SA, Greco M, Bianco MG, Foti D, Brunetti A, Fiorillo AS. Glucose biosensors in clinical practice: principles, limits and
perspectives of currently used devices. Theranostics 2022;12:493-511. DOI PubMed PMC
205. Aihara M, Kubota N, Kadowaki T. Study of the correlation between tear glucose concentrations and blood glucose concentrations.
Diabetes 2018;67:944-P. DOI
206. Agrawal RP, Sharma N, Rathore MS, et al. Noninvasive method for glucose level estimation by saliva. J Diabetes Metab 2013;4:266.
Available from: https://www.researchgate.net/profile/Vivek-Agarwal-13/publication/337591632_Noninvasive_Method_for_Glucose_Level_
_
_
Estimation by Saliva/links/5ddf733aa6fdcc2837f05fb9/Noninvasive-Method-for-Glucose-Level-Estimation-by-Saliva.pdf .
[Last accessed on 28 Apr 2024]
207. Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable glucose monitoring and implantable drug delivery systems for diabetes
management. Adv Healthc Mater 2021;10:e2100194. DOI
208. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors - sensor principles and architectures. Sensors
2008;8:1400-58. DOI PubMed PMC
209. Mohan A, Rajendran V, Mishra RK, Jayaraman M. Recent advances and perspectives in sweat based wearable electrochemical
sensors. TrAC Trends Anal Chem 2020;131:116024. DOI
210. Pirovano P, Dorrian M, Shinde A, et al. A wearable sensor for the detection of sodium and potassium in human sweat during
exercise. Talanta 2020;219:121145. DOI
211. Zhao C, Li X, Wu Q, Liu X. A thread-based wearable sweat nanobiosensor. Biosens Bioelectron 2021;188:113270. DOI
212. Wang S, Wu Y, Gu Y, et al. Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-
selective electrode. Anal Chem 2017;89:10224-31. DOI
213. Jeerapan I, Sempionatto JR, Pavinatto A, You JM, Wang J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J
Mater Chem A Mater 2016;4:18342-53. DOI PubMed PMC
214. Nyein HYY, Bariya M, Kivimäki L, et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches
toward decoding sweat. Sci Adv 2019;5:eaaw9906. DOI PubMed PMC
215. Chen C, Dong ZQ, Shen JH, Chen HW, Zhu YH, Zhu ZG. 2D photonic crystal hydrogel sensor for tear glucose monitoring. ACS
Omega 2018;3:3211-7. DOI PubMed PMC
216. Alexeev VL, Das S, Finegold DN, Asher SA. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear
fluid. Clin Chem 2004;50:2353-60. DOI PubMed

