Page 59 - Read Online
P. 59
Page 38 of 44 Jung et al. Soft Sci 2024;4:15 https://dx.doi.org/10.20517/ss.2024.02
89. Jung HH, Ha J, Park J, et al. Highly deformable double-sided neural probe with all-in-one electrode system for real-time in-vivo
detection of dopamine for Parkinson’s disease. Adv Funct Mater 2024;34:2311436. DOI
90. Liu G, Lin Y. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes. Electrochem
Commun 2006;8:251-6. DOI
91. Romero MR, Ahumada F, Garay F, Baruzzi AM. Amperometric biosensor for direct blood lactate detection. Anal Chem
2010;82:5568-72. DOI PubMed
92. Vidya H, Kumara Swamy BE, Sharma SC, Jayaprakash GK, Hariprasad SA. Effect of graphite oxide and exfoliated graphite oxide as
a modifier for the voltametric determination of dopamine in presence of uric acid and folic acid. Sci Rep 2021;11:24040. DOI
PubMed PMC
93. Alimohammadi S, Kiani MA, Imani M, Rafii-Tabar H, Sasanpour P. A proposed implantable voltammetric carbon fiber-based
microsensor for corticosteroid monitoring by cochlear implants. Mikrochim Acta 2021;188:357. DOI PubMed
94. Lei Y, Butler D, Lucking MC, et al. Single-atom doping of MoS with manganese enables ultrasensitive detection of dopamine:
2
experimental and computational approach. Sci Adv 2020;6:eabc4250. DOI PubMed PMC
95. Khan RN, Saba F, Kausar SF, Siddiqui MH. Pattern of electrolyte imbalance in Type 2 diabetes patients: experience from a tertiary
care hospital. Pak J Med Sci 2019;35:797-801. DOI PubMed PMC
96. Campuzano S, Pedrero M, Torrente-rodríguez RM, Pingarrón JM. Affinity-based wearable electrochemical biosensors: natural versus
biomimetic receptors. Anal Sens 2023;3:e202200087. DOI
97. García-Salas JM, Tello-Montoliu A, Manzano-Fernández S, et al. Interleukin-6 as a predictor of cardiovascular events in troponin-
negative non-ST elevation acute coronary syndrome patients. Int J Clin Pract 2014;68:294-303. DOI PubMed
98. Ferreira PC, Ataíde VN, Silva Chagas CL, et al. Wearable electrochemical sensors for forensic and clinical applications. TrAC Trends
Anal Chem 2019;119:115622. DOI
99. Yang Y, Feijóo J, Briega-martos V, et al. Operando methods: a new era of electrochemistry. Curr Opin Electrochem 2023;42:101403.
DOI
100. Bobacka J, Ivaska A, Lewenstam A. Potentiometric ion sensors. Chem Rev 2008;108:329-51. DOI PubMed
101. Lee H, Hong YJ, Baik S, Hyeon T, Kim DH. Enzyme-based glucose sensor: from invasive to wearable device. Adv Healthc Mater
2018;7:e1701150. DOI PubMed
102. Bollella P, Sharma S, Cass AEG, Antiochia R. Microneedle-based biosensor for minimally-invasive lactate detection. Biosens
Bioelectron 2019;123:152-9. DOI PubMed
103. Sun M, Cui C, Chen H, Wang D, Zhang W, Guo W. Enzymatic and non-enzymatic uric acid electrochemical biosensors: a review.
Chempluschem 2023;88:e202300262. DOI PubMed
104. Rocchitta G, Secchi O, Alvau MD, et al. Development and characterization of an implantable biosensor for telemetric monitoring of
ethanol in the brain of freely moving rats. Anal Chem 2012;84:7072-9. DOI PubMed
105. Rasitanon N, Ittisoponpisan S, Kaewpradub K, Jeerapan I. Wearable electrodes for lactate: applications in enzyme-based sensors and
energy biodevices. Anal Sens 2023;3:e202200066. DOI
106. Harper A, Anderson MR. Electrochemical glucose sensors - developments using electrostatic assembly and carbon nanotubes for
biosensor construction. Sensors 2010;10:8248-74. DOI PubMed PMC
107. Ghindilis AL, Krishnan R, Atanasov P, Wilkins E. Flow-through amperometric immunosensor: fast ‘sandwich’ scheme
immunoassay. Biosens Bioelectron 1997;12:415-23. DOI PubMed
108. Antiochia R, Cass AEG, Palleschi G. Purification and sensor applications of an oxygen insensitive, thermophilic diaphorase. Anal
Chim Acta 1997;345:17-28. DOI
109. Chaubey A, Malhotra BD. Mediated biosensors. Biosens Bioelectron 2002;17:441-56. DOI PubMed
110. Bridge JA, Iyengar S, Salary CB, et al. Clinical response and risk for reported suicidal ideation and suicide attempts in pediatric
antidepressant treatment: a meta-analysis of randomized controlled trials. JAMA 2007;297:1683-96. DOI PubMed
111. Ghindilis AL, Atanasov P, Wilkins E. Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications.
Electroanalysis 1997;9:661-74. DOI
112. Gorton L. Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis 1995;7:23-45. DOI
113. Gorton L, Lindgren A, Larsson T, Munteanu F, Ruzgas T, Gazaryan I. Direct electron transfer between heme-containing enzymes and
electrodes as basis for third generation biosensors. Anal Chim Acta 1999;400:91-108. DOI
114. Zhang W, Li G. Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci 2004;20:603-9. DOI PubMed
115. Xiao X, Xia HQ, Wu R, et al. Tackling the challenges of enzymatic (bio)fuel cells. Chem Rev 2019;119:9509-58. DOI PubMed
116. Wilson JR, Caruana DJ, Gilardi G. Engineering redox functions in a nucleic acid binding protein. Chem Commun 2003:356-7. DOI
PubMed
117. Zayats M, Katz E, Willner I. Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic
acid-FAD cofactor monolayer. J Am Chem Soc 2002;124:2120-1. DOI PubMed
118. Jesionowski T, Zdarta J, Krajewska B. Enzyme immobilization by adsorption: a review. Adsorption 2014;20:801-21. DOI
119. Imam HT, Marr PC, Marr AC. Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chem
2021;23:4980-5005. DOI
120. Zucca P, Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules
2014;19:14139-94. DOI PubMed PMC

