Page 61 - Read Online
P. 61
Page 40 of 44 Jung et al. Soft Sci 2024;4:15 https://dx.doi.org/10.20517/ss.2024.02
154. Kaur J, Choudhary S, Chaudhari R, Jayant RD, Joshi A. 9 - Enzyme-based biosensors. In: Pal K, Kraatz HB, Khasnobish A, Bag S,
Banerjee I, Kuruganti U, editors. Bioelectronics and medical devices. Woodhead Publishing; 2019. pp. 211-40. DOI
155. Sirisha VL, Jain A, Jain A. Chapter nine - Enzyme immobilization: an overview on methods, support material, and applications of
immobilized enzymes. Adv Food Nutr Res 2016;79:179-211. DOI PubMed
156. Moreno-Bondi MC, Taitt CR, Shriver-Lake LC, Ligler FS. Multiplexed measurement of serum antibodies using an array biosensor.
Biosens Bioelectron 2006;21:1880-6. DOI PubMed
157. Akter R, Jeong B, Lee YM, Choi JS, Rahman MA. Femtomolar detection of cardiac troponin I using a novel label-free and reagent-
free dendrimer enhanced impedimetric immunosensor. Biosens Bioelectron 2017;91:637-43. DOI PubMed
158. Andoy NM, Filipiak MS, Vetter D, Gutiérrez-sanz Ó, Tarasov A. Graphene-based electronic immunosensor with femtomolar
detection limit in whole serum. Adv Mater Technol 2018;3:1800186. DOI
159. Basu J, Datta S, RoyChaudhuri C. A graphene field effect capacitive Immunosensor for sub-femtomolar food toxin detection. Biosens
Bioelectron 2015;68:544-9. DOI PubMed
160. Wehmeyer KR, White RJ, Kissinger PT, Heineman WR. Electrochemical affinity assays/sensors: brief history and current status.
Annu Rev Anal Chem 2021;14:109-31. DOI PubMed
161. Tu J, Torrente-Rodríguez RM, Wang M, Gao W. The era of digital health: a review of portable and wearable affinity biosensors. Adv
Funct Mater 2020;30:1906713. DOI
162. Sempionatto JR, Lasalde-Ramírez JA, Mahato K, Wang J, Gao W. Wearable chemical sensors for biomarker discovery in the omics
era. Nat Rev Chem 2022;6:899-915. DOI PubMed PMC
163. Flynn CD, Chang D, Mahmud A, et al. Biomolecular sensors for advanced physiological monitoring. Nat Rev Bioeng 2023;1:560-75.
DOI PubMed PMC
164. Guo W, Zhang C, Ma T, et al. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J Nanobiotechnology
2021;19:166. DOI PubMed PMC
165. Yang D, Liu X, Zhou Y, et al. Aptamer-based biosensors for detection of lead(ii) ion: a review. Anal Methods 2017;9:1976-90. DOI
166. Wang W, Chen C, Qian M, Zhao XS. Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem 2008;373:213-
9. DOI PubMed
167. Cheng AK, Sen D, Yu HZ. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules.
Bioelectrochemistry 2009;77:1-12. DOI PubMed
168. Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific binding-fundamental concepts and consequences for
biosensing applications. Chem Rev 2021;121:8095-160. DOI PubMed
169. Blind M, Blank M. Aptamer selection technology and recent advances. Mol Ther Nucleic Acids 2015;4:e223. DOI PubMed PMC
170. Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol Appl
Biochem 2022;69:1771-92. DOI PubMed PMC
171. Lyu C, Khan IM, Wang Z. Capture-SELEX for aptamer selection: a short review. Talanta 2021;229:122274. DOI PubMed
172. Yano-Ozawa Y, Lobsiger N, Muto Y, et al. Molecular detection using aptamer-modified gold nanoparticles with an immobilized
DNA brush for the prevention of non-specific aggregation. RSC Adv 2021;11:11984-91. DOI PubMed PMC
173. Liu Y, Canoura J, Alkhamis O, Xiao Y. Immobilization strategies for enhancing sensitivity of electrochemical aptamer-based sensors.
ACS Appl Mater Interfaces 2021;13:9491-9. DOI PubMed PMC
174. Oberhaus FV, Frense D, Beckmann D. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection
of proteins: a review. Biosensors 2020;10:45. DOI PubMed PMC
175. Herrera-Chacón A, Cetó X, Del Valle M. Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues.
Anal Bioanal Chem 2021;413:6117-40. DOI PubMed PMC
176. Gui R, Jin H, Guo H, Wang Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical
biosensors. Biosens Bioelectron 2018;100:56-70. DOI
177. Lowdon JW, Diliën H, Singla P, et al. MIPs for commercial application in low-cost sensors and assays - an overview of the current
status quo. Sens Actuators B Chem 2020;325:128973. DOI PubMed PMC
178. Denmark DJ, Mohapatra S, Mohapatra SS. Point-of-care diagnostics: molecularly imprinted polymers and nanomaterials for
enhanced biosensor selectivity and transduction. EuroBiotech J 2020;4:184-206. DOI
179. Pourmadadi M, Soleimani Dinani H, Saeidi Tabar F, et al. Properties and applications of graphene and its derivatives in biosensors
for cancer detection: a comprehensive review. Biosensors 2022;12:269. DOI PubMed PMC
180. Morales MA, Halpern JM. Guide to Selecting a Biorecognition element for biosensors. Bioconjug Chem 2018;29:3231-9. DOI
PubMed PMC
181. Choi KR, Troudt BK, Bühlmann P. Ion-selective electrodes with sensing membranes covalently attached to both the inert polymer
substrate and conductive carbon contact. Angew Chem Int Ed Engl 2023;62:e202304674. DOI PubMed
182. De Marco R, Clarke G, Pejcic B. Ion-selective electrode potentiometry in environmental analysis. Electroanalysis 2007;19:1987-
2001. DOI
183. Ding J, Qin W. Recent advances in potentiometric biosensors. TrAC Trends Anal Chem 2020;124:115803. DOI
184. Bariya M, Nyein HYY, Javey A. Wearable sweat sensors. Nat Electron 2018;1:160-71. DOI
185. Cuartero M, Parrilla M, Crespo GA. Wearable potentiometric sensors for medical applications. Sensors 2019;19:363. DOI PubMed
PMC

