Page 64 - Read Online
P. 64
Jung et al. Soft Sci 2024;4:15 https://dx.doi.org/10.20517/ss.2024.02 Page 43 of 44
247. Hong YJ, Lee H, Kim J, et al. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to
estimate pre-/post-exercise glucose levels. Adv Funct Mater 2018;28:1805754. DOI
248. Gil B, Anastasova S, Yang GZ. A smart wireless ear-worn device for cardiovascular and sweat parameter monitoring during physical
exercise: design and performance results. Sensors 2019;19:1616. DOI PubMed PMC
249. Yu Y, Nassar J, Xu C, et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine
interfaces. Sci Robot 2020;5:eaaz7946. DOI PubMed PMC
250. Sempionatto JR, Lin M, Yin L, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic
biomarkers. Nat Biomed Eng 2021;5:737-48. DOI
251. Sempionatto JR, Nakagawa T, Pavinatto A, et al. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip
2017;17:1834-42. DOI PubMed PMC
252. Park J, Sempionatto JR, Kim J, et al. Microscale biosensor array based on flexible polymeric platform toward lab-on-a-needle: real-
time multiparameter biomedical assays on curved needle surfaces. ACS Sens 2020;5:1363-73. DOI
253. Yokus MA, Songkakul T, Pozdin VA, Bozkurt A, Daniele MA. Wearable multiplexed biosensor system toward continuous
monitoring of metabolites. Biosens Bioelectron 2020;153:112038. DOI PubMed
254. Misra S, Oliver NS. Utility of ketone measurement in the prevention, diagnosis and management of diabetic ketoacidosis. Diabet Med
2015;32:14-23. DOI PubMed
255. Forrow NJ, Sanghera GS, Walters SJ, Watkin JL. Development of a commercial amperometric biosensor electrode for the ketone D-
3-hydroxybutyrate. Biosens Bioelectron 2005;20:1617-25. DOI PubMed
256. Wang CC, Hennek JW, Ainla A, et al. A paper-based “pop-up” electrochemical device for analysis of beta-hydroxybutyrate. Anal
Chem 2016;88:6326-33. DOI PubMed PMC
257. Teymourian H, Moonla C, Tehrani F, et al. Microneedle-based detection of ketone bodies along with glucose and lactate: toward real-
time continuous interstitial fluid monitoring of diabetic ketosis and ketoacidosis. Anal Chem 2020;92:2291-300. DOI PubMed
258. Moon JM, Del Caño R, Moonla C, et al. Self-testing of ketone bodies, along with glucose, using touch-based sweat analysis. ACS
Sens 2022;7:3973-81. DOI
259. Vargas E, Teymourian H, Tehrani F, et al. Enzymatic/immunoassay dual-biomarker sensing chip: towards decentralized insulin/
glucose detection. Angew Chem Int Ed Engl 2019;58:6376-9. DOI PubMed
260. Liu S, Shen Z, Deng L, Liu G. Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin
towards precise diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022;209:114251. DOI
261. Buxton OM, Cain SW, O’Connor SP, et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with
circadian disruption. Sci Transl Med 2012;4:129ra43. DOI PubMed PMC
262. Munje RD, Muthukumar S, Prasad S. Lancet-free and label-free diagnostics of glucose in sweat using Zinc Oxide based flexible
bioelectronics. Sen Actuators B Chem 2017;238:482-90. DOI
263. Tian G, Zhou Z, Li M, Li X, Xu T, Zhang X. Oriented antibody-assembled metal-organic frameworks for persistent wearable sweat
cortisol detection. Anal Chem 2023;95:13250-7. DOI PubMed
264. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids 2009;37:1-17. DOI PubMed
265. Kim J, Sempionatto JR, Imani S, et al. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor
platform. Adv Sci 2018;5:1800880. DOI PubMed PMC
266. Tehrani F, Teymourian H, Wuerstle B, et al. An integrated wearable microneedle array for the continuous monitoring of multiple
biomarkers in interstitial fluid. Nat Biomed Eng 2022;6:1214-24. DOI
267. Wang M, Yang Y, Min J et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed
Eng 2022;6:1225-35. DOI PubMed PMC
268. Rodríguez-Rodríguez I, Rodríguez JV, Chatzigiannakis I, Zamora Izquierdo MÁ. On the possibility of predicting glycaemia ‘on the
fly’ with constrained iot devices in type 1 diabetes mellitus patients. Sensors 2019;19:4538. DOI PubMed PMC
269. Sudharsan B, Peeples M, Shomali M. Hypoglycemia prediction using machine learning models for patients with type 2 diabetes. J
Diabetes Sci Technol 2015;9:86-90. DOI PubMed PMC
270. Reifman J, Rajaraman S, Gribok A, Ward WK. Predictive monitoring for improved management of glucose levels. J Diabetes Sci
Technol 2007;1:478-86. DOI PubMed PMC
271. Li K, Liu C, Zhu T, Herrero P, Georgiou P. GluNet: a deep learning framework for accurate glucose forecasting. IEEE J Biomed
Health Inform 2020;24:414-23. DOI PubMed
272. Gu W, Zhou Y, Zhou Z, et al. SugarMate: non-intrusive blood glucose monitoring with smartphones. Proc ACM Interact Mob
Wearable Ubiquitous Technol 2017;1:1-27. DOI
273. Beauchamp J, Bunescu R, Marling C, Li Z, Liu C. LSTMs and deep residual networks for carbohydrate and bolus recommendations
in type 1 diabetes management. Sensors 2021;21:3303. DOI PubMed PMC
274. Li K, Daniels J, Liu C, Herrero P, Georgiou P. Convolutional recurrent neural networks for glucose prediction. IEEE J Biomed
Health Inform 2020;24:603-13. DOI PubMed
275. Zhu T, Li K, Kuang L, Herrero P, Georgiou P. An insulin bolus advisor for type 1 diabetes using deep reinforcement learning.
Sensors 2020;20:5058. DOI PubMed PMC
276. Aliberti A, Pupillo I, Terna S, et al. A multi-patient data-driven approach to blood glucose prediction. IEEE Access 2019;7:69311-25.
DOI

