Page 63 - Read Online
P. 63
Page 42 of 44 Jung et al. Soft Sci 2024;4:15 https://dx.doi.org/10.20517/ss.2024.02
217. Jeon HJ, Kim S, Park S, et al. Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens.
Nano Lett 2021;21:8933-40. DOI
218. Fang H, Kaur G, Wang B. Progress in boronic acid-based fluorescent glucose sensors. J Fluoresc 2004;14:481-9. DOI PubMed
219. Chen L, Tse WH, Chen Y, McDonald MW, Melling J, Zhang J. Nanostructured biosensor for detecting glucose in tear by applying
fluorescence resonance energy transfer quenching mechanism. Biosens Bioelectron 2017;91:393-9. DOI PubMed
220. Yan Q, Peng B, Su G, Cohan BE, Major TC, Meyerhoff ME. Measurement of tear glucose levels with amperometric glucose
biosensor/capillary tube configuration. Anal Chem 2011;83:8341-6. DOI
221. Chu MX, Miyajima K, Takahashi D, et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood
sugar assessment. Talanta 2011;83:960-5. DOI
222. Yao H, Shum AJ, Cowan M, Lähdesmäki I, Parviz BA. A contact lens with embedded sensor for monitoring tear glucose level.
Biosens Bioelectron 2011;26:3290-6. DOI PubMed PMC
223. Kim J, Kim M, Lee MS, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat
Commun 2017;8:14997. DOI PubMed PMC
224. Park J, Kim J, Kim SY, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv
2018;4:eaap9841. DOI PubMed PMC
225. Keum DH, Kim SK, Koo J, et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci Adv 2020;6:eaba3252. DOI
PubMed PMC
226. Sempionatto JR, Brazaca LC, García-Carmona L, et al. Eyeglasses-based tear biosensing system: Non-invasive detection of alcohol,
vitamins and glucose. Biosens Bioelectron 2019;137:161-70. DOI PubMed PMC
227. Matzeu G, Florea L, Diamond D. Advances in wearable chemical sensor design for monitoring biological fluids. Sens Actuators B
Chem 2015;211:403-18. DOI
228. Goldoni R, Scolaro A, Boccalari E, et al. Malignancies and biosensors: a focus on oral cancer detection through salivary biomarkers.
Biosensors 2021;11:396. DOI PubMed PMC
229. Bel’skaya LV, Sarf EA, Makarova NA. Use of fourier transform ir spectroscopy for the study of saliva composition. J Appl Spectrosc
2018;85:445-51. DOI
230. Malon RS, Sadir S, Balakrishnan M, Córcoles EP. Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics.
Biomed Res Int 2014;2014:962903. DOI PubMed PMC
231. Dhanya M, Hegde S. Salivary glucose as a diagnostic tool in Type II diabetes mellitus: a case-control study. Niger J Clin Pract
2016;19:486-90. DOI PubMed
232. Bihar E, Wustoni S, Pappa AM, Salama KN, Baran D, Inal S. A fully inkjet-printed disposable glucose sensor on paper. npj Flex
Electron 2018;2:30. DOI
233. Ciui B, Tertis M, Feurdean CN, et al. Cavitas electrochemical sensor toward detection of N-epsilon (carboxymethyl)lysine in oral
cavity. Sens Actuators B Chem 2019;281:399-407. DOI
234. Arakawa T, Tomoto K, Nitta H, et al. A wearable cellulose acetate-coated mouthguard biosensor for in-vivo salivary glucose
measurement. Anal Chem 2020;92:12201-7. DOI
235. Lim HR, Lee SM, Park S, et al. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosens
Bioelectron 2022;210:114329. DOI
236. García-Carmona L, Martín A, Sempionatto JR, et al. Pacifier biosensor: toward noninvasive saliva biomarker monitoring. Anal Chem
2019;91:13883-91. DOI
237. Fogh-andersen N, Altura BM, Altura BT, Siggaard-andersen O. Composition of interstitial fluid. Clin Chem 1995;41:1522-5. DOI
PubMed
238. Sun H, Zheng Y, Shi G, Haick H, Zhang M. Wearable clinic: from microneedle-based sensors to next-generation healthcare
platforms. Small 2023;19:e2207539. DOI PubMed
239. Dervisevic M, Alba M, Prieto-simon B, Voelcker NH. Skin in the diagnostics game: Wearable biosensor nano- and microsystems for
medical diagnostics. Nano Today 2020;30:100828. DOI
240. Friedel M, Thompson IAP, Kasting G, et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat
Biomed Eng 2023;7:1541-55. DOI
241. Sharma S, Huang Z, Rogers M, Boutelle M, Cass AE. Evaluation of a minimally invasive glucose biosensor for continuous tissue
monitoring. Anal Bioanal Chem 2016;408:8427-35. DOI PubMed PMC
242. Yang J, Gong X, Chen S, et al. Development of smartphone-controlled and microneedle-based wearable continuous glucose
monitoring system for home-care diabetes management. ACS Sens 2023;8:1241-51. DOI
243. Rao G, Glikfeld P, Guy RH. Reverse iontophoresis: development of a noninvasive approach for glucose monitoring. Pharm Res
1993;10:1751-5. DOI PubMed
244. Yao Y, Chen J, Guo Y, et al. Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive
blood glucose sensors. Biosens Bioelectron 2021;179:113078. DOI
245. De la Paz E, Barfidokht A, Rios S, Brown C, Chao E, Wang J. Extended noninvasive glucose monitoring in the interstitial fluid using
an epidermal biosensing patch. Anal Chem 2021;93:12767-75. DOI PubMed
246. Imani S, Bandodkar AJ, Mohan AMV, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health
and fitness monitoring. Nat Commun 2016;7:11650. DOI PubMed PMC

