Page 206 - Read Online
P. 206

Page 30 of 35                           Nam et al. Soft Sci 2023;3:28  https://dx.doi.org/10.20517/ss.2023.19

               35.       Park J, Choi S, Janardhan AH, et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci Transl
                    Med 2016;8:344ra86.  DOI
               36.       Lee W, Yun H, Song J, Sunwoo S, Kim D. Nanoscale materials and deformable device designs for bioinspired and biointegrated
                    electronics. Acc Mater Res 2021;2:266-81.  DOI
               37.       Sunwoo SH, Han SI, Jung D, et al. Stretchable low-impedance conductor with Ag-Au-Pt core-shell-shell nanowires and in situ
                    formed Pt nanoparticles for wearable and implantable device. ACS Nano 2023;17:7550-61.  DOI  PubMed
               38.       Sunwoo S, Han SI, Kang H, et al. Stretchable low-impedance nanocomposite comprised of Ag-Au core-shell nanowires and Pt black
                    for epicardial recording and stimulation. Adv Mater Technol 2020;5:1900768.  DOI
               39.       Cha  GD,  Lee  WH,  Lim  C,  Choi  MK,  Kim  DH.  Materials  engineering,  processing,  and  device  application  of  hydrogel
                    nanocomposites. Nanoscale 2020;12:10456-73.  DOI  PubMed
               40.       Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and
                    device applications. Chem Soc Rev 2019;48:1566-95.  DOI
               41.       Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material design and fabrication strategies for stretchable metallic nanocomposites.
                    Small 2020;16:1906270.  DOI
               42.       Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater
                    2020;32:e1902743.  DOI  PubMed
               43.       Hong S, Lee J, Do K, et al. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and
                    storage devices. Adv Funct Mater 2017;27:1704353.  DOI
               44.       Jung D, Lim C, Shim HJ, et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021;373:1022-6.  DOI
               45.       Niu X, Peng S, Liu L, Wen W, Sheng P. Characterizing and patterning of PDMS-based conducting composites. Adv Mater
                    2007;19:2682-6.  DOI
               46.       Lv R, Xu W, Na B, Chen B. Insight into the role of filler network in the viscoelasticity of a carbon black filled thermoplastic
                    elastomer: a strain dependent electrical conductivity study. J Macromol Sci 2008;47:774-82.  DOI
               47.       Kong J, Jang N, Kim S, Kim J. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain
                    sensors. Carbon 2014;77:199-207.  DOI
               48.       Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks
                    grown by chemical vapour deposition. Nat Mater 2011;10:424-8.  DOI  PubMed
               49.       Boland CS, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.
                    Science 2016;354:1257-60.  DOI
               50.       Kabiri Ameri S, Ho R, Jang H, et al. Graphene electronic tattoo sensors. ACS Nano 2017;11:7634-41.  DOI
               51.       Lee WH, Suk JW, Lee J, et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent
                    conductive films on plastic. ACS Nano 2012;6:1284-90.  DOI
               52.       Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic
                    conductors. Nat Mater 2009;8:494-9.  DOI  PubMed
               53.       Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature
                    tolerance. Adv Funct Mater 2018;28:1704195.  DOI
               54.       Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon
                    nanotubes. Nat Nanotechnol 2011;6:788-92.  DOI
               55.       Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533.  DOI
               56.       Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced carbon for flexible and wearable electronics.  Adv Mater
                    2019;31:e1801072.  DOI
               57.       Hu L, Pasta M, Mantia FL, et al. Stretchable, porous, and conductive energy textiles. Nano Lett 2010;10:708-14.  DOI
               58.       Qiu L, Liu D, Wang Y, et al. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled
                    by superelastic graphene aerogels. Adv Mater 2014;26:3333-7.  DOI
               59.       Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat
                    Nanotechnol 2021;16:1019-29.  DOI  PubMed  PMC
               60.       Polat EO, Balci O, Kakenov N, Uzlu HB, Kocabas C, Dahiya R. Synthesis of large area graphene for high performance in flexible
                    optoelectronic devices. Sci Rep 2015;5:16744.  DOI  PubMed  PMC
               61.       Gan D, Huang Z, Wang X, et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for
                    adhesive bioelectronics. Adv Funct Mater 2020;30:1907678.  DOI
               62.       Xia S, Song S, Jia F, Gao G. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and
                    physiological signal monitoring. J Mater Chem B 2019;7:4638-48.  DOI
               63.       Ojha S, Acharya SK, Raghavendra G. Mechanical properties of natural carbon black reinforced polymer composites. J Appl Polym
                    Sci 2015:132.  DOI
               64.       Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature
                    2009;457:706-10.  DOI
               65.       Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008;320:1308.
                    DOI
               66.       Lee H, Lee Y, Song C, et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer
   201   202   203   204   205   206   207   208   209   210   211