Page 206 - Read Online
P. 206
Page 30 of 35 Nam et al. Soft Sci 2023;3:28 https://dx.doi.org/10.20517/ss.2023.19
35. Park J, Choi S, Janardhan AH, et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci Transl
Med 2016;8:344ra86. DOI
36. Lee W, Yun H, Song J, Sunwoo S, Kim D. Nanoscale materials and deformable device designs for bioinspired and biointegrated
electronics. Acc Mater Res 2021;2:266-81. DOI
37. Sunwoo SH, Han SI, Jung D, et al. Stretchable low-impedance conductor with Ag-Au-Pt core-shell-shell nanowires and in situ
formed Pt nanoparticles for wearable and implantable device. ACS Nano 2023;17:7550-61. DOI PubMed
38. Sunwoo S, Han SI, Kang H, et al. Stretchable low-impedance nanocomposite comprised of Ag-Au core-shell nanowires and Pt black
for epicardial recording and stimulation. Adv Mater Technol 2020;5:1900768. DOI
39. Cha GD, Lee WH, Lim C, Choi MK, Kim DH. Materials engineering, processing, and device application of hydrogel
nanocomposites. Nanoscale 2020;12:10456-73. DOI PubMed
40. Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and
device applications. Chem Soc Rev 2019;48:1566-95. DOI
41. Joo H, Jung D, Sunwoo SH, Koo JH, Kim DH. Material design and fabrication strategies for stretchable metallic nanocomposites.
Small 2020;16:1906270. DOI
42. Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater
2020;32:e1902743. DOI PubMed
43. Hong S, Lee J, Do K, et al. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and
storage devices. Adv Funct Mater 2017;27:1704353. DOI
44. Jung D, Lim C, Shim HJ, et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021;373:1022-6. DOI
45. Niu X, Peng S, Liu L, Wen W, Sheng P. Characterizing and patterning of PDMS-based conducting composites. Adv Mater
2007;19:2682-6. DOI
46. Lv R, Xu W, Na B, Chen B. Insight into the role of filler network in the viscoelasticity of a carbon black filled thermoplastic
elastomer: a strain dependent electrical conductivity study. J Macromol Sci 2008;47:774-82. DOI
47. Kong J, Jang N, Kim S, Kim J. Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain
sensors. Carbon 2014;77:199-207. DOI
48. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks
grown by chemical vapour deposition. Nat Mater 2011;10:424-8. DOI PubMed
49. Boland CS, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.
Science 2016;354:1257-60. DOI
50. Kabiri Ameri S, Ho R, Jang H, et al. Graphene electronic tattoo sensors. ACS Nano 2017;11:7634-41. DOI
51. Lee WH, Suk JW, Lee J, et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent
conductive films on plastic. ACS Nano 2012;6:1284-90. DOI
52. Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic
conductors. Nat Mater 2009;8:494-9. DOI PubMed
53. Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature
tolerance. Adv Funct Mater 2018;28:1704195. DOI
54. Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon
nanotubes. Nat Nanotechnol 2011;6:788-92. DOI
55. Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533. DOI
56. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced carbon for flexible and wearable electronics. Adv Mater
2019;31:e1801072. DOI
57. Hu L, Pasta M, Mantia FL, et al. Stretchable, porous, and conductive energy textiles. Nano Lett 2010;10:708-14. DOI
58. Qiu L, Liu D, Wang Y, et al. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled
by superelastic graphene aerogels. Adv Mater 2014;26:3333-7. DOI
59. Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat
Nanotechnol 2021;16:1019-29. DOI PubMed PMC
60. Polat EO, Balci O, Kakenov N, Uzlu HB, Kocabas C, Dahiya R. Synthesis of large area graphene for high performance in flexible
optoelectronic devices. Sci Rep 2015;5:16744. DOI PubMed PMC
61. Gan D, Huang Z, Wang X, et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for
adhesive bioelectronics. Adv Funct Mater 2020;30:1907678. DOI
62. Xia S, Song S, Jia F, Gao G. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and
physiological signal monitoring. J Mater Chem B 2019;7:4638-48. DOI
63. Ojha S, Acharya SK, Raghavendra G. Mechanical properties of natural carbon black reinforced polymer composites. J Appl Polym
Sci 2015:132. DOI
64. Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature
2009;457:706-10. DOI
65. Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008;320:1308.
DOI
66. Lee H, Lee Y, Song C, et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer

