Page 207 - Read Online
P. 207
Nam et al. Soft Sci 2023;3:28 https://dx.doi.org/10.20517/ss.2023.19 Page 31 of 35
treatment. Nat Commun 2015;6:10059. DOI PubMed PMC
67. Liu N, Chortos A, Lei T, et al. Ultratransparent and stretchable graphene electrodes. Sci Adv 2017;3:e1700159. DOI PubMed PMC
68. Shi G, Lowe SE, Teo AJ, et al. A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of
wearable micron-scale tactile sensors. Appl Mater Today 2019;16:482-92. DOI
69. Sun Y, Li D, Kim JU, et al. Carbon aerogel reinforced PDMS nanocomposites with controllable and hierarchical microstructures for
multifunctional wearable devices. Carbon 2021;171:758-67. DOI
70. Wu J, Wang H, Su Z, et al. Highly flexible and sensitive wearable e-skin based on graphite nanoplatelet and polyurethane
nanocomposite films in mass industry production available. ACS Appl Mater Interfaces 2017;9:38745-54. DOI
71. Amjadi M, Turan M, Clementson CP, Sitti M. Parallel microcracks-based ultrasensitive and highly stretchable strain sensors. ACS
Appl Mater Interfaces 2016;8:5618-26. DOI PubMed
72. Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors.
Science 2008;321:1468-72. DOI PubMed
73. Gu X, Li S, Xiao Y, et al. Exposure to black carbon is associated with dermographism: a population-based study in college students.
Australas J Dermatol 2022;63:e86-8. DOI PubMed
74. Serup J. How to diagnose and classify tattoo complications in the clinic: a system of distinctive patterns. In: Serup J, Bäumler W,
editors. Diagnosis and Therapy of Tattoo Complications. S. Karger AG; 2017. p. 58-73. DOI
75. Fusco L, Garrido M, Martín C, et al. Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale
2020;12:610-22. DOI
76. Ema M, Matsuda A, Kobayashi N, Naya M, Nakanishi J. Evaluation of dermal and eye irritation and skin sensitization due to carbon
nanotubes. Regul Toxicol Pharmacol 2011;61:276-81. DOI PubMed
77. Liu Y, Feig VR, Bao Z. Conjugated polymer for implantable electronics toward clinical application. Adv Healthc Mater
2021;10:e2001916. DOI PubMed
78. Green RA, Baek S, Poole-Warren LA, Martens PJ. Conducting polymer-hydrogels for medical electrode applications. Sci Technol
Adv Mater 2010;11:014107. DOI PubMed PMC
79. Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature
2018;555:83-8. DOI PubMed
80. Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: opportunities and challenges in biomedical applications. Chem
Rev 2018;118:6766-843. DOI PubMed
81. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076. DOI
PubMed PMC
82. Deslouis C, El Moustafid T, Musiani M, Tribollet B. Mixed ionic-electronic conduction of a conducting polymer film. Ac impedance
study of polypyrrole. Electrochimica Acta 1996;41:1343-9. DOI
83. Tan P, Wang H, Xiao F, et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat
Commun 2022;13:358. DOI PubMed PMC
84. Fang B, Yan J, Chang D, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat
Commun 2022;13:2101. DOI PubMed PMC
85. Feig VR, Tran H, Lee M, Bao Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli
of biological tissue. Nat Commun 2018;9:2740. DOI PubMed PMC
86. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed
Eng 2019;3:58-68. DOI PubMed
87. Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic
bioelectronics. Science 2022;375:1411-7. DOI
88. Pomfret SJ, Adams PN, Comfort NP, Monkman AP. Inherently electrically conductive fibers wet spun from a sulfonic acid-doped
polyaniline solution. Adv Mater 1998;10:1351-3. DOI
89. Cho S, Lee JS, Joo H. Recent developments of the solution-processable and highly conductive polyaniline composites for optical and
electrochemical applications. Polymers 2019;11:1965. DOI PubMed PMC
90. Wang Y, Shi Y, Pan L, et al. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer
hydrogels. Nano Lett 2015;15:7736-41. DOI
91. Humpolicek P, Kasparkova V, Saha P, Stejskal J. Biocompatibility of polyaniline. Synthetic Metals 2012;162:722-7. DOI
92. Lalegül-ülker Ö, Elçin AE, Elçin YM. Intrinsically conductive polymer nanocomposites for cellular applications. In: Chun HJ, Park
CH, Kwon IK, Khang G, editors. Cutting-Edge Enabling Technologies for Regenerative Medicine. Singapore: Springer; 2018. p.
135-53. DOI
93. Choi S, Park J, Hyun W, et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular
thermotherapy. ACS Nano 2015;9:6626-33. DOI
94. Ma R, Kang B, Cho S, Choi M, Baik S. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver
nanoflowers. ACS Nano 2015;9:10876-86. DOI PubMed
95. Miyamoto A, Lee S, Cooray NF, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with
nanomeshes. Nat Nanotechnol 2017;12:907-13. DOI
96. Zhang A, Lee JH, Lieber CM. Nanowire-enabled bioelectronics. Nano Today 2021;38:101135. DOI PubMed PMC

