Page 207 - Read Online
P. 207

Nam et al. Soft Sci 2023;3:28  https://dx.doi.org/10.20517/ss.2023.19           Page 31 of 35

                    treatment. Nat Commun 2015;6:10059.  DOI  PubMed  PMC
               67.       Liu N, Chortos A, Lei T, et al. Ultratransparent and stretchable graphene electrodes. Sci Adv 2017;3:e1700159.  DOI  PubMed  PMC
               68.       Shi G, Lowe SE, Teo AJ, et al. A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of
                    wearable micron-scale tactile sensors. Appl Mater Today 2019;16:482-92.  DOI
               69.       Sun Y, Li D, Kim JU, et al. Carbon aerogel reinforced PDMS nanocomposites with controllable and hierarchical microstructures for
                    multifunctional wearable devices. Carbon 2021;171:758-67.  DOI
               70.       Wu J, Wang H, Su Z, et al. Highly flexible and sensitive wearable e-skin based on graphite nanoplatelet and polyurethane
                    nanocomposite films in mass industry production available. ACS Appl Mater Interfaces 2017;9:38745-54.  DOI
               71.       Amjadi M, Turan M, Clementson CP, Sitti M. Parallel microcracks-based ultrasensitive and highly stretchable strain sensors. ACS
                    Appl Mater Interfaces 2016;8:5618-26.  DOI  PubMed
               72.       Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. A rubberlike stretchable active matrix using elastic conductors.
                    Science 2008;321:1468-72.  DOI  PubMed
               73.       Gu X, Li S, Xiao Y, et al. Exposure to black carbon is associated with dermographism: a population-based study in college students.
                    Australas J Dermatol 2022;63:e86-8.  DOI  PubMed
               74.       Serup J. How to diagnose and classify tattoo complications in the clinic: a system of distinctive patterns. In: Serup J, Bäumler W,
                    editors. Diagnosis and Therapy of Tattoo Complications. S. Karger AG; 2017. p. 58-73.  DOI
               75.       Fusco L, Garrido M, Martín C, et al. Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale
                    2020;12:610-22.  DOI
               76.       Ema M, Matsuda A, Kobayashi N, Naya M, Nakanishi J. Evaluation of dermal and eye irritation and skin sensitization due to carbon
                    nanotubes. Regul Toxicol Pharmacol 2011;61:276-81.  DOI  PubMed
               77.       Liu Y, Feig VR, Bao Z. Conjugated polymer for implantable electronics toward clinical application. Adv Healthc Mater
                    2021;10:e2001916.  DOI  PubMed
               78.       Green RA, Baek S, Poole-Warren LA, Martens PJ. Conducting polymer-hydrogels for medical electrode applications. Sci Technol
                    Adv Mater 2010;11:014107.  DOI  PubMed  PMC
               79.       Wang S, Xu J, Wang W, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature
                    2018;555:83-8.  DOI  PubMed
               80.       Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive polymers: opportunities and challenges in biomedical applications. Chem
                    Rev 2018;118:6766-843.  DOI  PubMed
               81.       Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.  DOI
                    PubMed  PMC
               82.       Deslouis C, El Moustafid T, Musiani M, Tribollet B. Mixed ionic-electronic conduction of a conducting polymer film. Ac impedance
                    study of polypyrrole. Electrochimica Acta 1996;41:1343-9.  DOI
               83.       Tan P, Wang H, Xiao F, et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat
                    Commun 2022;13:358.  DOI  PubMed  PMC
               84.       Fang B, Yan J, Chang D, et al. Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat
                    Commun 2022;13:2101.  DOI  PubMed  PMC
               85.       Feig VR, Tran H, Lee M, Bao Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli
                    of biological tissue. Nat Commun 2018;9:2740.  DOI  PubMed  PMC
               86.       Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed
                    Eng 2019;3:58-68.  DOI  PubMed
               87.       Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic
                    bioelectronics. Science 2022;375:1411-7.  DOI
               88.       Pomfret SJ, Adams PN, Comfort NP, Monkman AP. Inherently electrically conductive fibers wet spun from a sulfonic acid-doped
                    polyaniline solution. Adv Mater 1998;10:1351-3.  DOI
               89.       Cho S, Lee JS, Joo H. Recent developments of the solution-processable and highly conductive polyaniline composites for optical and
                    electrochemical applications. Polymers 2019;11:1965.  DOI  PubMed  PMC
               90.       Wang Y, Shi Y, Pan L, et al. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer
                    hydrogels. Nano Lett 2015;15:7736-41.  DOI
               91.       Humpolicek P, Kasparkova V, Saha P, Stejskal J. Biocompatibility of polyaniline. Synthetic Metals 2012;162:722-7.  DOI
               92.       Lalegül-ülker Ö, Elçin AE, Elçin YM. Intrinsically conductive polymer nanocomposites for cellular applications. In: Chun HJ, Park
                    CH, Kwon IK, Khang G, editors. Cutting-Edge Enabling Technologies for Regenerative Medicine. Singapore: Springer; 2018. p.
                    135-53.  DOI
               93.       Choi S, Park J, Hyun W, et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular
                    thermotherapy. ACS Nano 2015;9:6626-33.  DOI
               94.       Ma R, Kang B, Cho S, Choi M, Baik S. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver
                    nanoflowers. ACS Nano 2015;9:10876-86.  DOI  PubMed
               95.       Miyamoto A, Lee S, Cooray NF, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with
                    nanomeshes. Nat Nanotechnol 2017;12:907-13.  DOI
               96.       Zhang A, Lee JH, Lieber CM. Nanowire-enabled bioelectronics. Nano Today 2021;38:101135.  DOI  PubMed  PMC
   202   203   204   205   206   207   208   209   210   211   212