Page 209 - Read Online
P. 209

Nam et al. Soft Sci 2023;3:28  https://dx.doi.org/10.20517/ss.2023.19           Page 33 of 35

                    solid-liquid patterns. Adv Mater 2019;31:e1807811.  DOI  PubMed
               130.      Xu Y, Lin Z, Rajavel K, et al. Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic
                    interference shielding. Nanomicro Lett 2021;14:29.  DOI  PubMed  PMC
               131.      Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for
                    robust soft-matter robotics and electronics. Nat Mater 2018;17:618-24.  DOI  PubMed
               132.      Mou L, Qi J, Tang L, et al. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small
                    2020;16:e2005336.  DOI  PubMed
               133.      Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater
                    2021;20:851-8.  DOI  PubMed
               134.      Zhao Y, Huang X. Mechanisms and materials of flexible and stretchable skin sensors. Micromachines 2017;8:69.  DOI  PMC
               135.      Xu Y, Guo W, Zhou S, et al. Bioinspired perspiration-wicking electronic skins for comfortable and reliable multimodal health
                    monitoring. Adv Funct Materials 2022;32:2200961.  DOI
               136.      Liu S, Rao Y, Jang H, Tan P, Lu N. Strategies for body-conformable electronics. Matter 2022;5:1104-36.  DOI
               137.      Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable
                    electronics. Nat Mater 2021;20:859-68.  DOI
               138.      Park JE, Kang HS, Baek J, et al. Rewritable, printable conducting liquid metal hydrogel. ACS Nano 2019;13:9122-30.  DOI
               139.      Jiang Y, Ji S, Sun J, et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023;614:456-62.  DOI
               140.      Kim JJ, Wang Y, Wang H, Lee S, Yokota T, Someya T. Skin electronics: next-generation device platform for virtual and augmented
                    reality. Adv Funct Mater 2021;31:2009602.  DOI
               141.      Choi C, Choi MK, Hyeon T, Kim D. Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2016;2:1006-17.
                    DOI
               142.      Zheng Z, Xia J, Wang B, Guo Y. Hierarchically designed nanocomposites for triboelectric nanogenerator toward biomechanical
                    energy harvester and smart home system. Nano Energy 2022;95:107047.  DOI
               143.      Lee Y, Kim J, Joo H, Raj MS, Ghaffari R, Kim D. Wearable sensing systems with mechanically soft assemblies of nanoscale
                    materials. Adv Mater Technol 2017;2:1700053.  DOI
               144.      Wang C, He K, Li J, Chen X. Conformal electrodes for on-skin digitalization. SmartMat 2021;2:252-62.  DOI
               145.      Kwak SS, Yoo S, Avila R, et al. Skin-integrated devices with soft, holey architectures for wireless physiological monitoring, with
                    applications in the neonatal intensive care unit. Adv Mater 2021;33:e2103974.  DOI  PubMed
               146.      Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y. Recent advances in flexible and stretchable sensing systems: from the perspective of
                    system integration. ACS Nano 2020;14:6449-69.  DOI
               147.      Tang L, Wu S, Qu J, Gong L, Tang J. A review of conductive hydrogel used in flexible strain sensor. Materials 2020;13:3947.  DOI
                    PubMed  PMC
               148.      Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive
                    properties. Adv Mater 2016;28:722-8.  DOI
               149.      Ha KH, Zhang W, Jang H, et al. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid
                    responses of a highly porous nanocomposite. Adv Mater 2021;33:e2103320.  DOI
               150.      Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. Sci Adv 2018;4:eaar3921.  DOI
                    PubMed  PMC
               151.      Jang H, Sel K, Kim E, et al. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by
                    heterogeneous serpentine ribbons. Nat Commun 2022;13:6604.  DOI  PubMed  PMC
               152.      Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal
                    biopotential monitoring. Nat Commun 2020;11:4683.  DOI  PubMed  PMC
               153.      Kim D, Rogers JA. Stretchable electronics: materials strategies and devices. Adv Mater 2008;20:4887-92.  DOI
               154.      Lee GH, Woo H, Yoon C, et al. A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically
                    conductive and durable liquid-metal composite. Adv Mater 2022;34:2270236.  DOI
               155.      Yao S, Zhou W, Hinson R, et al. Ultrasoft porous 3D conductive dry electrodes for electrophysiological sensing and myoelectric
                    control. Adv Mater Technol 2022;7:2101637.  DOI  PubMed  PMC
               156.      Li Y, Yang D, Wu Z, et al. Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for
                    reliable strain and pressure sensors. Nano Energy 2023;109:108324.  DOI
               157.      Huang F, Wei W, Fan Q, Li L, Zhao M, Zhou Z. Super-stretchable and adhesive cellulose nanofiber-reinforced conductive
                    nanocomposite hydrogel for wearable motion-monitoring sensor. J Colloid Interface Sci 2022;615:215-26.  DOI
               158.      Lee JH, Hwang JY, Zhu J, et al. Flexible conductive composite integrated with personal earphone for wireless, real-time monitoring
                    of electrophysiological signs. ACS Appl Mater Interfaces 2018;10:21184-90.  DOI
               159.      Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward.
                    Nat Rev Cardiol 2021;18:581-99.  DOI  PubMed  PMC
               160.      Ershad F, Thukral A, Yue J, et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and
                    point-of-care treatment. Nat Commun 2020;11:3823.  DOI  PubMed  PMC
               161.      Zu W, Ohm Y, Carneiro MR, Vinciguerra M, Tavakoli M, Majidi C. A comparative study of silver microflakes in digitally printable
                    liquid metal embedded elastomer inks for stretchable electronics. Adv Mater Technol 2022;7:2200534.  DOI
   204   205   206   207   208   209   210   211   212   213   214