Page 209 - Read Online
P. 209
Nam et al. Soft Sci 2023;3:28 https://dx.doi.org/10.20517/ss.2023.19 Page 33 of 35
solid-liquid patterns. Adv Mater 2019;31:e1807811. DOI PubMed
130. Xu Y, Lin Z, Rajavel K, et al. Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic
interference shielding. Nanomicro Lett 2021;14:29. DOI PubMed PMC
131. Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal-elastomer composite for
robust soft-matter robotics and electronics. Nat Mater 2018;17:618-24. DOI PubMed
132. Mou L, Qi J, Tang L, et al. Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics. Small
2020;16:e2005336. DOI PubMed
133. Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater
2021;20:851-8. DOI PubMed
134. Zhao Y, Huang X. Mechanisms and materials of flexible and stretchable skin sensors. Micromachines 2017;8:69. DOI PMC
135. Xu Y, Guo W, Zhou S, et al. Bioinspired perspiration-wicking electronic skins for comfortable and reliable multimodal health
monitoring. Adv Funct Materials 2022;32:2200961. DOI
136. Liu S, Rao Y, Jang H, Tan P, Lu N. Strategies for body-conformable electronics. Matter 2022;5:1104-36. DOI
137. Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable
electronics. Nat Mater 2021;20:859-68. DOI
138. Park JE, Kang HS, Baek J, et al. Rewritable, printable conducting liquid metal hydrogel. ACS Nano 2019;13:9122-30. DOI
139. Jiang Y, Ji S, Sun J, et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023;614:456-62. DOI
140. Kim JJ, Wang Y, Wang H, Lee S, Yokota T, Someya T. Skin electronics: next-generation device platform for virtual and augmented
reality. Adv Funct Mater 2021;31:2009602. DOI
141. Choi C, Choi MK, Hyeon T, Kim D. Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2016;2:1006-17.
DOI
142. Zheng Z, Xia J, Wang B, Guo Y. Hierarchically designed nanocomposites for triboelectric nanogenerator toward biomechanical
energy harvester and smart home system. Nano Energy 2022;95:107047. DOI
143. Lee Y, Kim J, Joo H, Raj MS, Ghaffari R, Kim D. Wearable sensing systems with mechanically soft assemblies of nanoscale
materials. Adv Mater Technol 2017;2:1700053. DOI
144. Wang C, He K, Li J, Chen X. Conformal electrodes for on-skin digitalization. SmartMat 2021;2:252-62. DOI
145. Kwak SS, Yoo S, Avila R, et al. Skin-integrated devices with soft, holey architectures for wireless physiological monitoring, with
applications in the neonatal intensive care unit. Adv Mater 2021;33:e2103974. DOI PubMed
146. Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y. Recent advances in flexible and stretchable sensing systems: from the perspective of
system integration. ACS Nano 2020;14:6449-69. DOI
147. Tang L, Wu S, Qu J, Gong L, Tang J. A review of conductive hydrogel used in flexible strain sensor. Materials 2020;13:3947. DOI
PubMed PMC
148. Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive
properties. Adv Mater 2016;28:722-8. DOI
149. Ha KH, Zhang W, Jang H, et al. Highly sensitive capacitive pressure sensors over a wide pressure range enabled by the hybrid
responses of a highly porous nanocomposite. Adv Mater 2021;33:e2103320. DOI
150. Choi J, Ghaffari R, Baker LB, Rogers JA. Skin-interfaced systems for sweat collection and analytics. Sci Adv 2018;4:eaar3921. DOI
PubMed PMC
151. Jang H, Sel K, Kim E, et al. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by
heterogeneous serpentine ribbons. Nat Commun 2022;13:6604. DOI PubMed PMC
152. Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal
biopotential monitoring. Nat Commun 2020;11:4683. DOI PubMed PMC
153. Kim D, Rogers JA. Stretchable electronics: materials strategies and devices. Adv Mater 2008;20:4887-92. DOI
154. Lee GH, Woo H, Yoon C, et al. A personalized electronic tattoo for healthcare realized by on-the-spot assembly of an intrinsically
conductive and durable liquid-metal composite. Adv Mater 2022;34:2270236. DOI
155. Yao S, Zhou W, Hinson R, et al. Ultrasoft porous 3D conductive dry electrodes for electrophysiological sensing and myoelectric
control. Adv Mater Technol 2022;7:2101637. DOI PubMed PMC
156. Li Y, Yang D, Wu Z, et al. Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for
reliable strain and pressure sensors. Nano Energy 2023;109:108324. DOI
157. Huang F, Wei W, Fan Q, Li L, Zhao M, Zhou Z. Super-stretchable and adhesive cellulose nanofiber-reinforced conductive
nanocomposite hydrogel for wearable motion-monitoring sensor. J Colloid Interface Sci 2022;615:215-26. DOI
158. Lee JH, Hwang JY, Zhu J, et al. Flexible conductive composite integrated with personal earphone for wireless, real-time monitoring
of electrophysiological signs. ACS Appl Mater Interfaces 2018;10:21184-90. DOI
159. Bayoumy K, Gaber M, Elshafeey A, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward.
Nat Rev Cardiol 2021;18:581-99. DOI PubMed PMC
160. Ershad F, Thukral A, Yue J, et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and
point-of-care treatment. Nat Commun 2020;11:3823. DOI PubMed PMC
161. Zu W, Ohm Y, Carneiro MR, Vinciguerra M, Tavakoli M, Majidi C. A comparative study of silver microflakes in digitally printable
liquid metal embedded elastomer inks for stretchable electronics. Adv Mater Technol 2022;7:2200534. DOI

