Page 208 - Read Online
P. 208
Page 32 of 35 Nam et al. Soft Sci 2023;3:28 https://dx.doi.org/10.20517/ss.2023.19
97. Kim Y, Zhu J, Yeom B, et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013;500:59-63.
DOI
98. Hyun DC, Park M, Park C, et al. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable
conductive electrodes. Adv Mater 2011;23:2946-50. DOI
99. Ma R, Lee J, Choi D, Moon H, Baik S. Knitted fabrics made from highly conductive stretchable fibers. Nano Lett 2014;14:1944-51.
DOI PubMed
100. Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable
thin-film transistors. Adv Mater 2016;28:5986-96. DOI PubMed
101. Jiang Z, Nayeem MOG, Fukuda K, et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly
distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv Mater 2019;31:e1903446. DOI
102. McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014;22:116-27. DOI PubMed PMC
103. Lim G, Kwak SS, Kwon N, et al. Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet
electrodes for self-powered human-motion detection. Nano Energy 2017;42:300-6. DOI
104. Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun
2014;5:3132. DOI
105. Yang M, Hood ZD, Yang X, Chi M, Xia Y. Facile synthesis of Ag@Au core-sheath nanowires with greatly improved stability
against oxidation. Chem Commun 2017;53:1965-8. DOI PubMed
106. Lim C, Park C, Sunwoo SH, et al. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and
biocompatible nanocomposites. ACS Nano 2022;16:10431-42. DOI
107. Choi S, Han SI, Jung D, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable
and implantable bioelectronics. Nat Nanotechnol 2018;13:1048-56. DOI PubMed
108. Paladini F, Sannino A, Pollini M. In vivo testing of silver treated fibers for the evaluation of skin irritation effect and
hypoallergenicity. J Biomed Mater Res B Appl Biomater 2014;102:1031-7. DOI PubMed
109. Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal
and mucosal surface exposure: a review. Regul Toxicol Pharmacol 2018;98:257-67. DOI PubMed
110. Bomhard EM. The toxicology of indium oxide. Environ Toxicol Pharmacol 2018;58:250-8. DOI PubMed
111. Roach KA, Anderson SE, Stefaniak AB, Shane HL, Boyce GR, Roberts JR. Evaluation of the skin-sensitizing potential of gold
nanoparticles and the impact of established dermal sensitivity on the pulmonary immune response to various forms of gold.
Nanotoxicology 2020;14:1096-117. DOI PubMed PMC
112. Gupta R, Rai B. Penetration of gold nanoparticles through human skin: unraveling its mechanisms at the molecular scale. J Phys
Chem B 2016;120:7133-42. DOI PubMed
113. Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev
2018;47:4073-111. DOI
114. Wang H, Xing W, Chen S, Song C, Dickey MD, Deng T. Liquid metal composites with enhanced thermal conductivity and stability
using molecular thermal linker. Adv Mater 2021;33:e2103104. DOI
115. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33. DOI
116. Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425. DOI PubMed
117. Li Y, Feng S, Cao S, Zhang J, Kong D. Printable liquid metal microparticle ink for ultrastretchable electronics. ACS Appl Mater
Interfaces 2020;12:50852-9. DOI
118. Veerapandian S, Jang W, Seol JB, et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines.
Nat Mater 2021;20:533-40. DOI
119. Guymon GG, Malakooti MH. Multifunctional liquid metal polymer composites. J Polym Sci 2022;60:1300-27. DOI
120. Hoang TT, Phan PT, Thai MT, et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable
electronic, and medical applications. Adv Intell Syst 2022;4:2200282. DOI
121. Fassler A, Majidi C. Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 2015;27:1928-32. DOI PubMed
122. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury - current exposures and clinical manifestations. N Engl J Med
2003;349:1731-7. DOI PubMed
123. Kalantar-zadeh K, Rahim MA, Tang J. Low melting temperature liquid metals and their impacts on physical chemistry. Acc Mater
Res 2021;2:577-80. DOI
124. Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-based liquid metal micro/nanoparticles: recent advances and applications. Small
2020;16:1903391. DOI
125. Malakooti MH, Bockstaller MR, Matyjaszewski K, Majidi C. Liquid metal nanocomposites. Nanoscale Adv 2020;2:2668-77. DOI
PubMed PMC
126. Lin Y, Cooper C, Wang M, Adams JJ, Genzer J, Dickey MD. Handwritten, soft circuit boards and antennas using liquid metal
nanoparticles. Small 2015;11:6397-403. DOI PubMed
127. Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60. DOI PubMed
128. Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible
electronics. ACS Appl Mater Interfaces 2018;10:28232-41. DOI
129. Deng B, Cheng GJ. Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust

