Page 208 - Read Online
P. 208

Page 32 of 35                           Nam et al. Soft Sci 2023;3:28  https://dx.doi.org/10.20517/ss.2023.19

               97.       Kim Y, Zhu J, Yeom B, et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013;500:59-63.
                    DOI
               98.       Hyun DC, Park M, Park C, et al. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable
                    conductive electrodes. Adv Mater 2011;23:2946-50.  DOI
               99.       Ma R, Lee J, Choi D, Moon H, Baik S. Knitted fabrics made from highly conductive stretchable fibers. Nano Lett 2014;14:1944-51.
                    DOI  PubMed
               100.      Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable
                    thin-film transistors. Adv Mater 2016;28:5986-96.  DOI  PubMed
               101.      Jiang Z, Nayeem MOG, Fukuda K, et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly
                    distributed elastic polymer nanofibers via interfacial adhesion improvement. Adv Mater 2019;31:e1903446.  DOI
               102.      McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014;22:116-27.  DOI  PubMed  PMC
               103.      Lim G, Kwak SS, Kwon N, et al. Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet
                    electrodes for self-powered human-motion detection. Nano Energy 2017;42:300-6.  DOI
               104.      Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun
                    2014;5:3132.  DOI
               105.      Yang M, Hood ZD, Yang X, Chi M, Xia Y. Facile synthesis of Ag@Au core-sheath nanowires with greatly improved stability
                    against oxidation. Chem Commun 2017;53:1965-8.  DOI  PubMed
               106.      Lim C, Park C, Sunwoo SH, et al. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and
                    biocompatible nanocomposites. ACS Nano 2022;16:10431-42.  DOI
               107.      Choi S, Han SI, Jung D, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable
                    and implantable bioelectronics. Nat Nanotechnol 2018;13:1048-56.  DOI  PubMed
               108.      Paladini  F,  Sannino  A,  Pollini  M.  In  vivo  testing  of  silver  treated  fibers  for  the  evaluation  of  skin  irritation  effect  and
                    hypoallergenicity. J Biomed Mater Res B Appl Biomater 2014;102:1031-7.  DOI  PubMed
               109.      Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal
                    and mucosal surface exposure: a review. Regul Toxicol Pharmacol 2018;98:257-67.  DOI  PubMed
               110.      Bomhard EM. The toxicology of indium oxide. Environ Toxicol Pharmacol 2018;58:250-8.  DOI  PubMed
               111.      Roach KA, Anderson SE, Stefaniak AB, Shane HL, Boyce GR, Roberts JR. Evaluation of the skin-sensitizing potential of gold
                    nanoparticles and the impact of established dermal sensitivity on the pulmonary immune response to various forms of gold.
                    Nanotoxicology 2020;14:1096-117.  DOI  PubMed  PMC
               112.      Gupta R, Rai B. Penetration of gold nanoparticles through human skin: unraveling its mechanisms at the molecular scale. J Phys
                    Chem B 2016;120:7133-42.  DOI  PubMed
               113.      Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev
                    2018;47:4073-111.  DOI
               114.      Wang H, Xing W, Chen S, Song C, Dickey MD, Deng T. Liquid metal composites with enhanced thermal conductivity and stability
                    using molecular thermal linker. Adv Mater 2021;33:e2103104.  DOI
               115.      Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33.  DOI
               116.      Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater 2017;29:1606425.  DOI  PubMed
               117.      Li Y, Feng S, Cao S, Zhang J, Kong D. Printable liquid metal microparticle ink for ultrastretchable electronics. ACS Appl Mater
                    Interfaces 2020;12:50852-9.  DOI
               118.      Veerapandian S, Jang W, Seol JB, et al. Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines.
                    Nat Mater 2021;20:533-40.  DOI
               119.      Guymon GG, Malakooti MH. Multifunctional liquid metal polymer composites. J Polym Sci 2022;60:1300-27.  DOI
               120.      Hoang TT, Phan PT, Thai MT, et al. Magnetically engineered conductivity of soft liquid metal composites for robotic, wearable
                    electronic, and medical applications. Adv Intell Syst 2022;4:2200282.  DOI
               121.      Fassler A, Majidi C. Liquid-phase metal inclusions for a conductive polymer composite. Adv Mater 2015;27:1928-32.  DOI  PubMed
               122.      Clarkson TW, Magos L, Myers GJ. The toxicology of mercury - current exposures and clinical manifestations. N Engl J Med
                    2003;349:1731-7.  DOI  PubMed
               123.      Kalantar-zadeh K, Rahim MA, Tang J. Low melting temperature liquid metals and their impacts on physical chemistry. Acc Mater
                    Res 2021;2:577-80.  DOI
               124.      Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-based liquid metal micro/nanoparticles: recent advances and applications. Small
                    2020;16:1903391.  DOI
               125.      Malakooti MH, Bockstaller MR, Matyjaszewski K, Majidi C. Liquid metal nanocomposites. Nanoscale Adv 2020;2:2668-77.  DOI
                    PubMed  PMC
               126.      Lin Y, Cooper C, Wang M, Adams JJ, Genzer J, Dickey MD. Handwritten, soft circuit boards and antennas using liquid metal
                    nanoparticles. Small 2015;11:6397-403.  DOI  PubMed
               127.      Boley JW, White EL, Kramer RK. Mechanically sintered gallium-indium nanoparticles. Adv Mater 2015;27:2355-60.  DOI  PubMed
               128.      Liu S, Yuen MC, White EL, et al. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible
                    electronics. ACS Appl Mater Interfaces 2018;10:28232-41.  DOI
               129.      Deng B, Cheng GJ. Pulsed laser modulated shock transition from liquid metal nanoparticles to mechanically and thermally robust
   203   204   205   206   207   208   209   210   211   212   213