Page 210 - Read Online
P. 210
Page 34 of 35 Nam et al. Soft Sci 2023;3:28 https://dx.doi.org/10.20517/ss.2023.19
162. Namkoong M, Guo H, Rahman MS, et al. Moldable and transferrable conductive nanocomposites for epidermal electronics. Npj Flex
Electron 2022;6:41. DOI PubMed PMC
163. Roberts P, Zadan M, Majidi C. Soft tactile sensing skins for robotics. Curr Robot Rep 2021;2:343-54. DOI
164. Feng Y, Yu J, Sun D, Ren W, Shao C, Sun R. Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive
nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem Eng J 2022;433:133202. DOI
165. Li S, Xiao X, Hu J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring. ACS Appl
Electron Mater 2020;2:2282-300. DOI
166. Zhou Y, Lian H, Li Z, et al. Crack engineering boosts the performance of flexible sensors. VIEW 2022;3:20220025. DOI
167. Sun H, Fang X, Fang Z, et al. An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring.
Microsyst Nanoeng 2022;8:111. DOI PubMed PMC
168. Wang S, Xiao P, Liang Y, et al. Network cracks-based wearable strain sensors for subtle and large strain detection of human motions.
J Mater Chem C 2018;6:5140-7. DOI
169. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer
nanocomposite. ACS Nano 2014;8:5154-63. DOI PubMed
170. Stoyanov H, Kollosche M, Risse S, Waché R, Kofod G. Soft conductive elastomer materials for stretchable electronics and voltage
controlled artificial muscles. Adv Mater 2013;25:578-83. DOI PubMed
171. Lee H, Kwon D, Cho H, Park I, Kim J. Soft nanocomposite based multi-point, multi-directional strain mapping sensor using
anisotropic electrical impedance tomography. Sci Rep 2017;7:39837. DOI PubMed PMC
172. Araromi OA, Graule MA, Dorsey KL, et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature
2020;587:219-24. DOI
173. Yun T, Du J, Ji X, et al. Waterproof and ultrasensitive paper-based wearable strain/pressure sensor from carbon black/multilayer
graphene/carboxymethyl cellulose composite. Carbohydr Polym 2023;313:120898. DOI
174. Hasan MR, Sharma P, Suleman S, et al. Papertronics: marriage between paper and electronics becoming a real scenario in resource-
limited settings. ACS Appl Bio Mater 2023;6:1368-79. DOI
175. Solak İ, Gençer Ş, Yıldırım B, Öznur E, Hah D, Icoz K. Respiration monitoring using a paper-based wearable humidity sensor, a step
forward to clinical tests. Sens Actuator A Phys 2023;355:114316. DOI
176. Li T, Sakthivelpathi V, Qian Z, et al. Ultrasensitive capacitive sensor composed of nanostructured electrodes for human-machine
interface. Adv Mater Technol 2022;7:2101704. DOI
177. Zhang J, Goodman SM, Wise HG, Dichiara AB, Chung J. Electromechanical coupling of isotropic fibrous networks with tailored
auxetic behavior induced by water-printing under tension. J Mater Chem C 2021;9:4544-53. DOI
178. Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater
2015;27:2433-9. DOI
179. Su X, Wu X, Chen S, et al. A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical
transistor arrays and near hysteresis-free soft tactile sensors. Adv Mater 2022;34:2200682. DOI
180. Yang T, Deng W, Chu X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano
2021;15:11555-63. DOI
181. Yin T, Cheng Y, Hou Y, et al. 3D porous structure in MXene/PANI foam for a high-performance flexible pressure sensor. Small
2022;18:e2204806. DOI PubMed
182. Yang C, Li L, Zhao J, et al. Highly sensitive wearable pressure sensors based on three-scale nested wrinkling microstructures of
polypyrrole films. ACS Appl Mater Interfaces 2018;10:25811-8. DOI
183. Wang D, Zhou X, Song R, et al. Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic
micropattern for physiological signals monitoring. Chem Eng J 2021;404:126940. DOI
184. Kwon K, Kim JU, Won SM, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and
temperature. Nat Biomed Eng 2023. DOI
185. Li AL, Zhu S, Hu ZH, Peng Q, Fang X, Zhang YY. The distribution and epidemic characteristics of cerebrovascular disease in
followed-up hypertension patients. Sci Rep 2021;11:9366. DOI PubMed PMC
186. Jaffey JA, Wiggen K, Leach SB, Masseau I, Girens RE, Reinero CR. Pulmonary hypertension secondary to respiratory disease and/or
hypoxia in dogs: clinical features, diagnostic testing and survival. Vet J 2019;251:105347. DOI PubMed
187. Luo N, Dai W, Li C, et al. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv
Funct Mater 2016;26:1178-87. DOI
188. Lou Y, Liu H, Zhang J. Liquid metals in plastics for super-toughness and high-performance force sensors. Chem Eng J
2020;399:125732. DOI
189. Ning C, Dong K, Cheng R, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and
human-interactive sensing. Adv Funct Mater 2021;31:2006679. DOI
190. Liu Y, Yu Q, Luo X, Yang L, Cui Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through
3D printing. Microsyst Nanoeng 2021;7:75. DOI PubMed PMC
191. Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care 2013;3:12. DOI
PubMed PMC
192. Pirovano P, Dorrian M, Shinde A, et al. A wearable sensor for the detection of sodium and potassium in human sweat during

