Page 210 - Read Online
P. 210

Page 34 of 35                           Nam et al. Soft Sci 2023;3:28  https://dx.doi.org/10.20517/ss.2023.19

               162.      Namkoong M, Guo H, Rahman MS, et al. Moldable and transferrable conductive nanocomposites for epidermal electronics. Npj Flex
                    Electron 2022;6:41.  DOI  PubMed  PMC
               163.      Roberts P, Zadan M, Majidi C. Soft tactile sensing skins for robotics. Curr Robot Rep 2021;2:343-54.  DOI
               164.      Feng Y, Yu J, Sun D, Ren W, Shao C, Sun R. Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive
                    nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem Eng J 2022;433:133202.  DOI
               165.      Li S, Xiao X, Hu J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring. ACS Appl
                    Electron Mater 2020;2:2282-300.  DOI
               166.      Zhou Y, Lian H, Li Z, et al. Crack engineering boosts the performance of flexible sensors. VIEW 2022;3:20220025.  DOI
               167.      Sun H, Fang X, Fang Z, et al. An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring.
                    Microsyst Nanoeng 2022;8:111.  DOI  PubMed  PMC
               168.      Wang S, Xiao P, Liang Y, et al. Network cracks-based wearable strain sensors for subtle and large strain detection of human motions.
                    J Mater Chem C 2018;6:5140-7.  DOI
               169.      Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer
                    nanocomposite. ACS Nano 2014;8:5154-63.  DOI  PubMed
               170.      Stoyanov H, Kollosche M, Risse S, Waché R, Kofod G. Soft conductive elastomer materials for stretchable electronics and voltage
                    controlled artificial muscles. Adv Mater 2013;25:578-83.  DOI  PubMed
               171.      Lee H, Kwon D, Cho H, Park I, Kim J. Soft nanocomposite based multi-point, multi-directional strain mapping sensor using
                    anisotropic electrical impedance tomography. Sci Rep 2017;7:39837.  DOI  PubMed  PMC
               172.      Araromi OA, Graule MA, Dorsey KL, et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature
                    2020;587:219-24.  DOI
               173.      Yun T, Du J, Ji X, et al. Waterproof and ultrasensitive paper-based wearable strain/pressure sensor from carbon black/multilayer
                    graphene/carboxymethyl cellulose composite. Carbohydr Polym 2023;313:120898.  DOI
               174.      Hasan MR, Sharma P, Suleman S, et al. Papertronics: marriage between paper and electronics becoming a real scenario in resource-
                    limited settings. ACS Appl Bio Mater 2023;6:1368-79.  DOI
               175.      Solak İ, Gençer Ş, Yıldırım B, Öznur E, Hah D, Icoz K. Respiration monitoring using a paper-based wearable humidity sensor, a step
                    forward to clinical tests. Sens Actuator A Phys 2023;355:114316.  DOI
               176.      Li T, Sakthivelpathi V, Qian Z, et al. Ultrasensitive capacitive sensor composed of nanostructured electrodes for human-machine
                    interface. Adv Mater Technol 2022;7:2101704.  DOI
               177.      Zhang J, Goodman SM, Wise HG, Dichiara AB, Chung J. Electromechanical coupling of isotropic fibrous networks with tailored
                    auxetic behavior induced by water-printing under tension. J Mater Chem C 2021;9:4544-53.  DOI
               178.      Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater
                    2015;27:2433-9.  DOI
               179.      Su X, Wu X, Chen S, et al. A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical
                    transistor arrays and near hysteresis-free soft tactile sensors. Adv Mater 2022;34:2200682.  DOI
               180.      Yang T, Deng W, Chu X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano
                    2021;15:11555-63.  DOI
               181.      Yin T, Cheng Y, Hou Y, et al. 3D porous structure in MXene/PANI foam for a high-performance flexible pressure sensor. Small
                    2022;18:e2204806.  DOI  PubMed
               182.      Yang C, Li L, Zhao J, et al. Highly sensitive wearable pressure sensors based on three-scale nested wrinkling microstructures of
                    polypyrrole films. ACS Appl Mater Interfaces 2018;10:25811-8.  DOI
               183.      Wang D, Zhou X, Song R, et al. Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic
                    micropattern for physiological signals monitoring. Chem Eng J 2021;404:126940.  DOI
               184.      Kwon K, Kim JU, Won SM, et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and
                    temperature. Nat Biomed Eng 2023.  DOI
               185.      Li AL, Zhu S, Hu ZH, Peng Q, Fang X, Zhang YY. The distribution and epidemic characteristics of cerebrovascular disease in
                    followed-up hypertension patients. Sci Rep 2021;11:9366.  DOI  PubMed  PMC
               186.      Jaffey JA, Wiggen K, Leach SB, Masseau I, Girens RE, Reinero CR. Pulmonary hypertension secondary to respiratory disease and/or
                    hypoxia in dogs: clinical features, diagnostic testing and survival. Vet J 2019;251:105347.  DOI  PubMed
               187.      Luo N, Dai W, Li C, et al. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv
                    Funct Mater 2016;26:1178-87.  DOI
               188.      Lou Y, Liu H, Zhang J. Liquid metals in plastics for super-toughness and high-performance force sensors. Chem Eng J
                    2020;399:125732.  DOI
               189.      Ning C, Dong K, Cheng R, et al. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and
                    human-interactive sensing. Adv Funct Mater 2021;31:2006679.  DOI
               190.      Liu Y, Yu Q, Luo X, Yang L, Cui Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through
                    3D printing. Microsyst Nanoeng 2021;7:75.  DOI  PubMed  PMC
               191.      Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Ann Intensive Care 2013;3:12.  DOI
                    PubMed  PMC
               192.      Pirovano P, Dorrian M, Shinde A, et al. A wearable sensor for the detection of sodium and potassium in human sweat during
   205   206   207   208   209   210   211   212   213   214   215