Page 97 - Read Online
P. 97
Page 24 of 27 Chen et al. Energy Mater. 2025, 5, 500045 https://dx.doi.org/10.20517/energymater.2024.144
69. Tian, Y.; Li, J.; Liu, Y.; et al. Preparation and properties of PrBa Sr Co Fe O as novel oxygen electrode for reversible solid
5+δ
0.5
1.5
0.5
0.5
oxide electrochemical cell. Int. J. Hydrogen. Energy. 2018, 43, 12603-9. DOI
70. Laguna-Bercero, M. A.; Monzón, H.; Larrea, A.; Orera, V. M. Improved stability of reversible solid oxide cells with a nickelate-
based oxygen electrode. J. Mater. Chem. A. 2016, 4, 1446-53. DOI
71. Gu, X.; Nikolla, E. Design of ruddlesden-popper oxides with optimal surface oxygen exchange properties for oxygen reduction and
evolution. ACS. Catal. 2017, 7, 5912-20. DOI
72. Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Pikalova, E. Y.; Bronin, D. I.; Zaikov, Y. P. Reversible solid oxide fuel cell
for power accumulation and generation. Russ. J. Electrochem. 2018, 54, 644-9. DOI
73. Men, H. J.; Tian, N.; Qu, Y. M.; Wang, M.; Zhao, S.; Yu, J. Improved performance of a lanthanum strontium manganite-based
oxygen electrode for an intermediate-temperature solid oxide electrolysis cell realized via ionic conduction enhancement. Ceram. Int.
2019, 45, 7945-9. DOI
74. Zhang, S.; Wang, H.; Lu, M. Y.; Li, C.; Li, C.; Barnett, S. A. Electrochemical performance and stability of SrTi Fe Co O
0.3 0.6 0.1 3-δ
infiltrated La Sr MnO Zr 0.92 Y 6O oxygen electrodes for intermediate-temperature solid oxide electrochemical cells. J. Power.
0.2
0.8
3
2-δ
0.1
Sources. 2019, 426, 233-41. DOI
75. Yan, J.; Zhao, Z.; Shang, L.; Ou, D.; Cheng, M. Co-synthesized Y-stabilized Bi O and Sr-substituted LaMnO composite anode for
3
2
3
high performance solid oxide electrolysis cell. J. Power. Sources. 2016, 319, 124-30. DOI
76. Peng, X.; Tian, Y.; Liu, Y.; et al. An efficient symmetrical solid oxide electrolysis cell with LSFM-based electrodes for direct
electrolysis of pure CO . J. Co2. Util. 2020, 36, 18-24. DOI
2
77. Fan, H.; Zhang, Y.; Han, M. Infiltration of La Sr FeO nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide
0.6 0.4 3-δ
electrolysis cell. J. Alloys. Compd. 2017, 723, 620-6. DOI
78. Vibhu, V.; Vinke, I. C.; Zaravelis, F.; et al. Performance and degradation of electrolyte-supported single cell composed of Mo-Au-Ni/
GDC fuel electrode and LSCF oxygen electrode during high temperature steam electrolysis. Energies 2022, 15, 2726. DOI
79. Sar, J.; Schefold, J.; Brisse, A.; Djurado, E. Durability test on coral Ce Gd O -La Sr Co Fe O with La Sr Co Fe O
0.4
0.6
0.2
0.9
0.8
0.2
2-δ
0.6
3-δ
0.4
0.1
0.8
3-δ
current collector working in SOFC and SOEC modes. Electrochim. Acta. 2016, 201, 57-69. DOI
80. Yang, Z.; Wang, N.; Ma, C.; et al. Co-electrolysis of H O-CO in a solid oxide electrolysis cell with symmetrical
2 2
La Sr Co Fe Nb O electrode. J. Electroanal. Chem. 2019, 836, 107-11. DOI
0.4 0.6 0.2 0.7 0.1 3-δ
81. Cao, Z.; Wei, B.; Miao, J.; et al. Efficient electrolysis of CO in symmetrical solid oxide electrolysis cell with highly active
2
La Sr Fe Ti O electrode material. Electrochem. Commun. 2016, 69, 80-3. DOI
0.3
3
0.7
0.3
0.7
82. Dey, S.; Mukhopadhyay, J.; Lenka, R. K.; et al. Synthesis and characterization of Nanocrystalline Ba Sr Co Fe O for
0.4
0.6
3
0.2
0.8
application as an efficient anode in solid oxide electrolyser cell. Int. J. Hydrogen. Energy. 2020, 45, 3995-4007. DOI
83. Meng, X.; Shen, Y.; Xie, M.; et al. Novel solid oxide cells with SrCo Fe Ga O oxygen electrode for flexible power generation
0.1
3-δ
0.1
0.8
and hydrogen production. J. Power. Sources. 2016, 306, 226-32. DOI
84. Zhao, Z.; Qi, H.; Tang, S.; et al. A highly active and stable hybrid oxygen electrode for reversible solid oxide cells. Int. J. Hydrogen.
Energy. 2021, 46, 36012-22. DOI
85. Ni, C.; Irvine, J. T. Calcium manganite as oxygen electrode materials for reversible solid oxide fuel cell. Faraday. Discuss. 2015,
182, 289-305. DOI PubMed
86. Li, J.; Zhong, C.; Meng, X.; et al. Sr Fe Mo O -Zr 0.84 Y 0.16 O materials as oxygen electrodes for solid oxide electrolysis cells.
2
6-δ
2-δ
1.5
0.5
Fuel. Cells. 2014, 14, 1046-9. DOI
87. Tong, X.; Zhou, F.; Yang, S.; Zhong, S.; Wei, M.; Liu, Y. Performance and stability of Ruddlesden-Popper La NiO 4+δ oxygen
2
electrodes under solid oxide electrolysis cell operation conditions. Ceram. Int. 2017, 43, 10927-33. DOI
88. Ren, C.; Gan, Y.; Yang, C.; Lee, M.; Green, R. D.; Xue, X. Fabrication and characterization of microtubular solid oxide cells for CO
2
/CO redox operations. J. Appl. Electrochem. 2018, 48, 959-71. DOI
89. Danilov, N.; Lyagaeva, J.; Vdovin, G.; Pikalova, E.; Medvedev, D. Electricity/hydrogen conversion by the means of a protonic
ceramic electrolysis cell with Nd NiO -based oxygen electrode. Energy. Convers. Manag. 2018, 172, 129-37. DOI
4+δ
2
90. Morales-Zapata, M.; Larrea, A.; Laguna-Bercero, M. Reversible operation performance of microtubular solid oxide cells with a
nickelate-based oxygen electrode. Int. J. Hydrogen. Energy. 2020, 45, 5535-42. DOI
91. Zhang, M.; Wang, E.; Mao, J.; Wang, H.; Ouyang, M.; Hu, H. Performance analysis of a metal-supported intermediate-temperature
solid oxide electrolysis cell. Front. Energy. Res. 2022, 10, 888787. DOI
92. Wu, T.; Zhang, W.; Li, Y.; et al. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance. Adv.
Energy. Mater. 2018, 8, 1802203. DOI
93. Cao, J.; Li, Y.; Zheng, Y.; et al. A novel solid oxide electrolysis cell with micro-/nano channel anode for electrolysis at ultra-high
-2
current density over 5 A cm . Adv. Energy. Mater. 2022, 12, 2200899. DOI
94. Sahu, S. K.; Panthi, D.; Soliman, I.; Feng, H.; Du, Y. Fabrication and performance of micro-tubular solid oxide cells. Energies 2022,
15, 3536. DOI
95. Gaikwad, P. S.; Mondal, K.; Shin, Y. K.; van, D. A. C. T.; Pawar, G. Enhancing the Faradaic efficiency of solid oxide electrolysis
cells: progress and perspective. NPJ. Comput. Mater. 2023, 9, 1044. DOI
96. Brett, D. J.; Atkinson, A.; Brandon, N. P.; Skinner, S. J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 2008, 37,
1568-78. DOI PubMed
97. Kim, C.; Park, K.; Kalaev, D.; Nicollet, C.; Tuller, H. L. Effect of structure on oxygen diffusivity in layered oxides: a combined