Page 97 - Read Online
P. 97

Page 24 of 27          Chen et al. Energy Mater. 2025, 5, 500045  https://dx.doi.org/10.20517/energymater.2024.144

               69.       Tian, Y.; Li, J.; Liu, Y.; et al. Preparation and properties of PrBa Sr Co Fe O  as novel oxygen electrode for reversible solid
                                                                          5+δ
                                                               0.5
                                                                    1.5
                                                                       0.5
                                                                 0.5
                    oxide electrochemical cell. Int. J. Hydrogen. Energy. 2018, 43, 12603-9.  DOI
               70.       Laguna-Bercero, M. A.; Monzón, H.; Larrea, A.; Orera, V. M. Improved stability of reversible solid oxide cells with a nickelate-
                    based oxygen electrode. J. Mater. Chem. A. 2016, 4, 1446-53.  DOI
               71.       Gu, X.; Nikolla, E. Design of ruddlesden-popper oxides with optimal surface oxygen exchange properties for oxygen reduction and
                    evolution. ACS. Catal. 2017, 7, 5912-20.  DOI
               72.       Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Pikalova, E. Y.; Bronin, D. I.; Zaikov, Y. P. Reversible solid oxide fuel cell
                    for power accumulation and generation. Russ. J. Electrochem. 2018, 54, 644-9.  DOI
               73.       Men, H. J.; Tian, N.; Qu, Y. M.; Wang, M.; Zhao, S.; Yu, J. Improved performance of a lanthanum strontium manganite-based
                    oxygen electrode for an intermediate-temperature solid oxide electrolysis cell realized via ionic conduction enhancement. Ceram. Int.
                    2019, 45, 7945-9.  DOI
               74.       Zhang, S.; Wang, H.; Lu, M. Y.; Li, C.; Li, C.; Barnett, S. A. Electrochemical performance and stability of SrTi Fe Co O
                                                                                                0.3  0.6  0.1  3-δ
                    infiltrated La Sr MnO Zr 0.92 Y 6O  oxygen electrodes for intermediate-temperature solid oxide electrochemical cells. J. Power.
                               0.2
                             0.8
                                    3
                                            2-δ
                                         0.1
                    Sources. 2019, 426, 233-41.  DOI
               75.       Yan, J.; Zhao, Z.; Shang, L.; Ou, D.; Cheng, M. Co-synthesized Y-stabilized Bi O  and Sr-substituted LaMnO  composite anode for
                                                                         3
                                                                        2
                                                                                            3
                    high performance solid oxide electrolysis cell. J. Power. Sources. 2016, 319, 124-30.  DOI
               76.       Peng, X.; Tian, Y.; Liu, Y.; et al. An efficient symmetrical solid oxide electrolysis cell with LSFM-based electrodes for direct
                    electrolysis of pure CO . J. Co2. Util. 2020, 36, 18-24.  DOI
                                   2
               77.       Fan, H.; Zhang, Y.; Han, M. Infiltration of La Sr FeO  nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide
                                                  0.6  0.4  3-δ
                    electrolysis cell. J. Alloys. Compd. 2017, 723, 620-6.  DOI
               78.       Vibhu, V.; Vinke, I. C.; Zaravelis, F.; et al. Performance and degradation of electrolyte-supported single cell composed of Mo-Au-Ni/
                    GDC fuel electrode and LSCF oxygen electrode during high temperature steam electrolysis. Energies 2022, 15, 2726.  DOI
               79.       Sar, J.; Schefold, J.; Brisse, A.; Djurado, E. Durability test on coral Ce Gd O -La Sr Co Fe O  with La Sr Co Fe O
                                                                              0.4
                                                                           0.6
                                                                                 0.2
                                                                  0.9
                                                                                                      0.8
                                                                                                   0.2
                                                                        2-δ
                                                                                             0.6
                                                                                                         3-δ
                                                                                                0.4
                                                                     0.1
                                                                                    0.8
                                                                                       3-δ
                    current collector working in SOFC and SOEC modes. Electrochim. Acta. 2016, 201, 57-69.  DOI
               80.       Yang,  Z.;  Wang,  N.;  Ma,  C.;  et  al.  Co-electrolysis  of  H O-CO   in  a  solid  oxide  electrolysis  cell  with  symmetrical
                                                              2    2
                    La Sr Co Fe Nb O  electrode. J. Electroanal. Chem. 2019, 836, 107-11.  DOI
                      0.4  0.6  0.2  0.7  0.1  3-δ
               81.       Cao, Z.; Wei, B.; Miao, J.; et al. Efficient electrolysis of CO  in symmetrical solid oxide electrolysis cell with highly active
                                                              2
                    La Sr Fe Ti O  electrode material. Electrochem. Commun. 2016, 69, 80-3.  DOI
                              0.3
                                3
                           0.7
                      0.3
                        0.7
               82.       Dey, S.; Mukhopadhyay, J.; Lenka, R. K.; et al. Synthesis and characterization of Nanocrystalline Ba Sr Co Fe O  for
                                                                                              0.4
                                                                                           0.6
                                                                                                       3
                                                                                                    0.2
                                                                                                 0.8
                    application as an efficient anode in solid oxide electrolyser cell. Int. J. Hydrogen. Energy. 2020, 45, 3995-4007.  DOI
               83.       Meng, X.; Shen, Y.; Xie, M.; et al. Novel solid oxide cells with SrCo Fe Ga O  oxygen electrode for flexible power generation
                                                                    0.1
                                                                          3-δ
                                                                       0.1
                                                                 0.8
                    and hydrogen production. J. Power. Sources. 2016, 306, 226-32.  DOI
               84.       Zhao, Z.; Qi, H.; Tang, S.; et al. A highly active and stable hybrid oxygen electrode for reversible solid oxide cells. Int. J. Hydrogen.
                    Energy. 2021, 46, 36012-22.  DOI
               85.       Ni, C.; Irvine, J. T. Calcium manganite as oxygen electrode materials for reversible solid oxide fuel cell. Faraday. Discuss. 2015,
                    182, 289-305.  DOI  PubMed
               86.       Li, J.; Zhong, C.; Meng, X.; et al. Sr Fe Mo O -Zr 0.84 Y 0.16 O  materials as oxygen electrodes for solid oxide electrolysis cells.
                                            2
                                                    6-δ
                                                              2-δ
                                              1.5
                                                  0.5
                    Fuel. Cells. 2014, 14, 1046-9.  DOI
               87.       Tong, X.; Zhou, F.; Yang, S.; Zhong, S.; Wei, M.; Liu, Y. Performance and stability of Ruddlesden-Popper La NiO 4+δ  oxygen
                                                                                               2
                    electrodes under solid oxide electrolysis cell operation conditions. Ceram. Int. 2017, 43, 10927-33.  DOI
               88.       Ren, C.; Gan, Y.; Yang, C.; Lee, M.; Green, R. D.; Xue, X. Fabrication and characterization of microtubular solid oxide cells for CO
                                                                                                         2
                    /CO redox operations. J. Appl. Electrochem. 2018, 48, 959-71.  DOI
               89.       Danilov, N.; Lyagaeva, J.; Vdovin, G.; Pikalova, E.; Medvedev, D. Electricity/hydrogen conversion by the means of a protonic
                    ceramic electrolysis cell with Nd NiO -based oxygen electrode. Energy. Convers. Manag. 2018, 172, 129-37.  DOI
                                            4+δ
                                         2
               90.       Morales-Zapata, M.; Larrea, A.; Laguna-Bercero, M. Reversible operation performance of microtubular solid oxide cells with a
                    nickelate-based oxygen electrode. Int. J. Hydrogen. Energy. 2020, 45, 5535-42.  DOI
               91.       Zhang, M.; Wang, E.; Mao, J.; Wang, H.; Ouyang, M.; Hu, H. Performance analysis of a metal-supported intermediate-temperature
                    solid oxide electrolysis cell. Front. Energy. Res. 2022, 10, 888787.  DOI
               92.       Wu, T.; Zhang, W.; Li, Y.; et al. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance. Adv.
                    Energy. Mater. 2018, 8, 1802203.  DOI
               93.       Cao, J.; Li, Y.; Zheng, Y.; et al. A novel solid oxide electrolysis cell with micro-/nano channel anode for electrolysis at ultra-high
                                      -2
                    current density over 5 A cm . Adv. Energy. Mater. 2022, 12, 2200899.  DOI
               94.       Sahu, S. K.; Panthi, D.; Soliman, I.; Feng, H.; Du, Y. Fabrication and performance of micro-tubular solid oxide cells. Energies 2022,
                    15, 3536.  DOI
               95.       Gaikwad, P. S.; Mondal, K.; Shin, Y. K.; van, D. A. C. T.; Pawar, G. Enhancing the Faradaic efficiency of solid oxide electrolysis
                    cells: progress and perspective. NPJ. Comput. Mater. 2023, 9, 1044.  DOI
               96.       Brett, D. J.; Atkinson, A.; Brandon, N. P.; Skinner, S. J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 2008, 37,
                    1568-78.  DOI  PubMed
               97.       Kim, C.; Park, K.; Kalaev, D.; Nicollet, C.; Tuller, H. L. Effect of structure on oxygen diffusivity in layered oxides: a combined
   92   93   94   95   96   97   98   99   100   101   102