Page 98 - Read Online
P. 98

Chen et al. Energy Mater. 2025, 5, 500045  https://dx.doi.org/10.20517/energymater.2024.144  Page 25 of 27

                    theoretical and experimental study. J. Mater. Chem. A. 2022, 10, 15402-14.  DOI
               98.       Abdullah, B. J.; Jiang, Q.; Omar, M. S. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO   2
                    nanoparticles in different structures. Bull. Mater. Sci. 2016, 39, 1295-302.  DOI
               99.       Shi, H.; Su, C.; Ran, R.; Cao, J.; Shao, Z. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog. Nat. Sci.
                    Mater. Int. 2020, 30, 764-74.  DOI
               100.      Vendrell, X.; Yadav, D.; Raj, R.; West, A. R. Influence of flash sintering on the ionic conductivity of 8 mol% yttria stabilized
                    zirconia. J. Eur. Ceram. Soc. 2019, 39, 1352-8.  DOI
               101.      Mineshige, A. Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique. Solid.
                    State. Ion. 2004, 175, 483-5.  DOI
               102.      Zhang, Y.; Huang, X.; Lu, Z.; et al. Effect of starting powder on screen-printed YSZ films used as electrolyte in SOFCs. Solid. State.
                    Ion. 2006, 177, 281-7.  DOI
               103.      Yu, B.; Zhang, W.; Xu, J.; Chen, J.; Luo, X.; Stephan, K. Preparation and electrochemical behavior of dense YSZ film for SOEC. Int.
                    J. Hydrogen. Energy. 2012, 37, 12074-80.  DOI
               104.      Ye, L.; Xie, K. High-temperature electrocatalysis and key materials in solid oxide electrolysis cells. J. Energy. Chem. 2021, 54, 736-
                    45.  DOI
               105.      Kumar C, Bauri R. Enhancing the phase stability and ionic conductivity of scandia stabilized zirconia by rare earth co-doping. J.
                    Phys. Chem. Solids. 2014, 75, 642-50.  DOI
               106.      Bernadet, L.; Moncasi, C.; Torrell, M.; Tarancón, A. High-performing electrolyte-supported symmetrical solid oxide electrolysis cells
                    operating under steam electrolysis and co-electrolysis modes. Int. J. Hydrogen. Energy. 2020, 45, 14208-17.  DOI
               107.      Puente-Martínez, D.; Díaz-Guillén, J.; Montemayor, S.; et al. High ionic conductivity in CeO  SOFC solid electrolytes; effect of Dy
                                                                                 2
                    doping on their electrical properties. Int. J. Hydrogen. Energy. 2020, 45, 14062-70.  DOI
               108.      Molenda, J.; Świerczek, K.; Zając, W. Functional materials for the IT-SOFC. J. Power. Sources. 2007, 173, 657-70.  DOI
               109.      Wang, J.; Xiao, X.; Liu, Y.; Pan, K.; Pang, H.; Wei, S. The application of CeO -based materials in electrocatalysis. J. Mater. Chem.
                                                                       2
                    A. 2019, 7, 17675-702.  DOI
               110.      Zhang, Y.; Zhao, S.; Feng, J.; et al. Unraveling the physical chemistry and materials science of CeO -based nanostructures. Chem
                                                                                      2
                    2021, 7, 2022-59.  DOI
               111.      Qian, J.; Gong, Z.; Wang, M.; et al. Generating an electron-blocking layer with BaMn Ni O  mixed-oxide for Ce Sm O -based
                                                                            1-x  x  3         0.8  0.2  2-δ
                    solid oxide fuel cells. Ceram. Int. 2018, 44, 12739-44.  DOI
               112.      Ishihara, T.; Matsuda, H.; Takita, Y. Doped LaGaO  perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 1994,
                                                      3
                    116, 3801-3.  DOI
               113.      Yi, J. Y.; Choi, G. M. The effect of reduction atmosphere on the LaGaO -based solid oxide fuel cell. J. Eur. Ceram. Soc. 2005, 25,
                                                                   3
                    2655-9.  DOI
               114.      Tan, Z.; Ishihara, T. Effect of Ni-based cathodic layer on intermediate temperature tubular electrolysis cell using LaGaO -based
                                                                                                     3
                    electrolyte thin film. J. Phys. Energy. 2020, 2, 024004.  DOI
               115.      Dudek, M.; Lis, B.; Rapacz-Kmita, A.; Gajek, M.; Raźniak, A.; Drożdż, E. Some observations on the synthesis and electrolytic
                    properties of (Ba Ca )(M Y )O , M=Ce, Zr-based samples modified with calcium. Mater. Sci. Poland. 2016, 34, 101-14.  DOI
                               1-x
                                       0.1
                                          3
                                  x
                                     0.9
               116.      Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H. Protonic conduction in Zr-substituted BaCeO . Solid. State. Ion. 2000, 138, 91-8.
                                                                                  3
                    DOI
               117.      Yang,  L.;  Wang,  S.;  Blinn,  K.;  et  al.  Enhanced  sulfur  and  coking  tolerance  of  a  mixed  ion  conductor  for  SOFCs:
                    BaZr Ce Y  Yb O . Science 2009, 326, 126-9.  DOI
                       0.1  0.7  0.2-x  x  3-δ
               118.      Rajendran, S.; Thangavel, N. K.; Ding, H.; Ding, Y.; Ding, D.; Reddy, A. L. M. Tri-doped BaCeO -BaZrO  as a chemically stable
                                                                                     3    3
                    electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs). ACS. Appl. Mater.
                    Interfaces. 2020, 12, 38275-84.  DOI
               119.      Li, W.; Guan, B.; Ma, L.; Tian, H.; Liu, X. Synergistic coupling of proton conductors BaZr Ce Y Yb O  and La Ce O  to create
                                                                                       0.1
                                                                                         3-δ
                                                                                    0.1
                                                                                 0.7
                                                                              0.1
                                                                                                  2
                                                                                                   7
                                                                                                2
                    chemical stable, interface active electrolyte for steam electrolysis cells. ACS. Appl. Mater. Interfaces. 2019, 11, 18323-30.  DOI
               120.      Kim, J.; Jun, A.; Gwon, O.; et al. Hybrid-solid oxide electrolysis cell: a new strategy for efficient hydrogen production. Nano.
                    Energy. 2018, 44, 121-6.  DOI
               121.      Xue, Q.; Huang, X.; Zhang, H.; Xu, H.; Zhang, J.; Wang, L. Synthesis and characterization of high ionic conductivity ScSZ core/shell
                    nanocomposites. J. Rare. Earths. 2017, 35, 567-73.  DOI
               122.      Matsui, T.; Inaba, M.; Mineshige, A.; Ogumi, Z. Electrochemical properties of ceria-based oxides for use in intermediate-temperature
                    SOFCs. Solid. State. Ion. 2005, 176, 647-54.  DOI
               123.      Hirano, M. Effect of Bi O  additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties.
                                     3
                                    2
                    Solid. State. Ion. 2003, 158, 215-23.  DOI
               124.      Traina, K.; Henrist, C.; Vertruyen, B.; Cloots, R. Dense La Sr Ga Mg O 2.85  electrolyte for IT-SOFC’s: sintering study and
                                                               0.1
                                                            0.9
                                                                  0.8
                                                                      0.2
                    electrochemical characterization. J. Alloys. Compd. 2011, 509, 1493-500.  DOI
               125.      Biswal, R. C.; Biswas, K. Novel way of phase stability of LSGM and its conductivity enhancement. Int. J. Hydrogen. Energy. 2015,
                    40, 509-18.  DOI
               126.      Rao, Y.; Zhong, S.; He, F.; Wang, Z.; Peng, R.; Lu, Y. Cobalt-doped BaZrO : a single phase air electrode material for reversible solid
                                                                     3
                    oxide cells. Int. J. Hydrogen. Energy. 2012, 37, 12522-7.  DOI
   93   94   95   96   97   98   99   100   101   102   103