Page 98 - Read Online
P. 98
Chen et al. Energy Mater. 2025, 5, 500045 https://dx.doi.org/10.20517/energymater.2024.144 Page 25 of 27
theoretical and experimental study. J. Mater. Chem. A. 2022, 10, 15402-14. DOI
98. Abdullah, B. J.; Jiang, Q.; Omar, M. S. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2
nanoparticles in different structures. Bull. Mater. Sci. 2016, 39, 1295-302. DOI
99. Shi, H.; Su, C.; Ran, R.; Cao, J.; Shao, Z. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog. Nat. Sci.
Mater. Int. 2020, 30, 764-74. DOI
100. Vendrell, X.; Yadav, D.; Raj, R.; West, A. R. Influence of flash sintering on the ionic conductivity of 8 mol% yttria stabilized
zirconia. J. Eur. Ceram. Soc. 2019, 39, 1352-8. DOI
101. Mineshige, A. Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique. Solid.
State. Ion. 2004, 175, 483-5. DOI
102. Zhang, Y.; Huang, X.; Lu, Z.; et al. Effect of starting powder on screen-printed YSZ films used as electrolyte in SOFCs. Solid. State.
Ion. 2006, 177, 281-7. DOI
103. Yu, B.; Zhang, W.; Xu, J.; Chen, J.; Luo, X.; Stephan, K. Preparation and electrochemical behavior of dense YSZ film for SOEC. Int.
J. Hydrogen. Energy. 2012, 37, 12074-80. DOI
104. Ye, L.; Xie, K. High-temperature electrocatalysis and key materials in solid oxide electrolysis cells. J. Energy. Chem. 2021, 54, 736-
45. DOI
105. Kumar C, Bauri R. Enhancing the phase stability and ionic conductivity of scandia stabilized zirconia by rare earth co-doping. J.
Phys. Chem. Solids. 2014, 75, 642-50. DOI
106. Bernadet, L.; Moncasi, C.; Torrell, M.; Tarancón, A. High-performing electrolyte-supported symmetrical solid oxide electrolysis cells
operating under steam electrolysis and co-electrolysis modes. Int. J. Hydrogen. Energy. 2020, 45, 14208-17. DOI
107. Puente-Martínez, D.; Díaz-Guillén, J.; Montemayor, S.; et al. High ionic conductivity in CeO SOFC solid electrolytes; effect of Dy
2
doping on their electrical properties. Int. J. Hydrogen. Energy. 2020, 45, 14062-70. DOI
108. Molenda, J.; Świerczek, K.; Zając, W. Functional materials for the IT-SOFC. J. Power. Sources. 2007, 173, 657-70. DOI
109. Wang, J.; Xiao, X.; Liu, Y.; Pan, K.; Pang, H.; Wei, S. The application of CeO -based materials in electrocatalysis. J. Mater. Chem.
2
A. 2019, 7, 17675-702. DOI
110. Zhang, Y.; Zhao, S.; Feng, J.; et al. Unraveling the physical chemistry and materials science of CeO -based nanostructures. Chem
2
2021, 7, 2022-59. DOI
111. Qian, J.; Gong, Z.; Wang, M.; et al. Generating an electron-blocking layer with BaMn Ni O mixed-oxide for Ce Sm O -based
1-x x 3 0.8 0.2 2-δ
solid oxide fuel cells. Ceram. Int. 2018, 44, 12739-44. DOI
112. Ishihara, T.; Matsuda, H.; Takita, Y. Doped LaGaO perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 1994,
3
116, 3801-3. DOI
113. Yi, J. Y.; Choi, G. M. The effect of reduction atmosphere on the LaGaO -based solid oxide fuel cell. J. Eur. Ceram. Soc. 2005, 25,
3
2655-9. DOI
114. Tan, Z.; Ishihara, T. Effect of Ni-based cathodic layer on intermediate temperature tubular electrolysis cell using LaGaO -based
3
electrolyte thin film. J. Phys. Energy. 2020, 2, 024004. DOI
115. Dudek, M.; Lis, B.; Rapacz-Kmita, A.; Gajek, M.; Raźniak, A.; Drożdż, E. Some observations on the synthesis and electrolytic
properties of (Ba Ca )(M Y )O , M=Ce, Zr-based samples modified with calcium. Mater. Sci. Poland. 2016, 34, 101-14. DOI
1-x
0.1
3
x
0.9
116. Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H. Protonic conduction in Zr-substituted BaCeO . Solid. State. Ion. 2000, 138, 91-8.
3
DOI
117. Yang, L.; Wang, S.; Blinn, K.; et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs:
BaZr Ce Y Yb O . Science 2009, 326, 126-9. DOI
0.1 0.7 0.2-x x 3-δ
118. Rajendran, S.; Thangavel, N. K.; Ding, H.; Ding, Y.; Ding, D.; Reddy, A. L. M. Tri-doped BaCeO -BaZrO as a chemically stable
3 3
electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs). ACS. Appl. Mater.
Interfaces. 2020, 12, 38275-84. DOI
119. Li, W.; Guan, B.; Ma, L.; Tian, H.; Liu, X. Synergistic coupling of proton conductors BaZr Ce Y Yb O and La Ce O to create
0.1
3-δ
0.1
0.7
0.1
2
7
2
chemical stable, interface active electrolyte for steam electrolysis cells. ACS. Appl. Mater. Interfaces. 2019, 11, 18323-30. DOI
120. Kim, J.; Jun, A.; Gwon, O.; et al. Hybrid-solid oxide electrolysis cell: a new strategy for efficient hydrogen production. Nano.
Energy. 2018, 44, 121-6. DOI
121. Xue, Q.; Huang, X.; Zhang, H.; Xu, H.; Zhang, J.; Wang, L. Synthesis and characterization of high ionic conductivity ScSZ core/shell
nanocomposites. J. Rare. Earths. 2017, 35, 567-73. DOI
122. Matsui, T.; Inaba, M.; Mineshige, A.; Ogumi, Z. Electrochemical properties of ceria-based oxides for use in intermediate-temperature
SOFCs. Solid. State. Ion. 2005, 176, 647-54. DOI
123. Hirano, M. Effect of Bi O additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties.
3
2
Solid. State. Ion. 2003, 158, 215-23. DOI
124. Traina, K.; Henrist, C.; Vertruyen, B.; Cloots, R. Dense La Sr Ga Mg O 2.85 electrolyte for IT-SOFC’s: sintering study and
0.1
0.9
0.8
0.2
electrochemical characterization. J. Alloys. Compd. 2011, 509, 1493-500. DOI
125. Biswal, R. C.; Biswas, K. Novel way of phase stability of LSGM and its conductivity enhancement. Int. J. Hydrogen. Energy. 2015,
40, 509-18. DOI
126. Rao, Y.; Zhong, S.; He, F.; Wang, Z.; Peng, R.; Lu, Y. Cobalt-doped BaZrO : a single phase air electrode material for reversible solid
3
oxide cells. Int. J. Hydrogen. Energy. 2012, 37, 12522-7. DOI

