Page 94 - Read Online
P. 94

Chen et al. Energy Mater. 2025, 5, 500045  https://dx.doi.org/10.20517/energymater.2024.144  Page 21 of 27

               (8) Developing an integrated electrolysis and fuel cell system to enhance the flexibility and application
               scenarios of SOEC technology.

               DECLARATIONS
               Acknowledgments
               The authors acknowledge the financial support of the National Key R&D Program of China and the
               National Natural Science Foundation of China.


               Authors’ contributions
               Conceived the idea and directed the project: Sun, C.
               Wrote the paper: Chen, W.; Sun, C.

               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               The financial support of the National Key R&D Program of China (No. 2023YFE0115800) and the National
               Natural Science Foundation of China (No. 52472271).


               Conflicts of interest
               Both authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.

               REFERENCES
               1.       Zheng, R.; Liu, Z.; Wang, Y.; Xie, Z.; He, M. The future of green energy and chemicals: rational design of catalysis routes. Joule
                    2022, 6, 1148-59.  DOI
               2.       Wolf, S. E.; Winterhalder, F. E.; Vibhu, V.; et al. Solid oxide electrolysis cells - current material development and industrial
                    application. J. Mater. Chem. A. 2023, 11, 17977-8028.  DOI
               3.       Hartvigsen, J.; Elangovan, S.; Elwell, J.; Larsen, D. Oxygen production from mars atmosphere carbon dioxide using solid oxide
                    electrolysis. ECS. Trans. 2017, 78, 2953-63.  DOI
               4.       Constantin, A. Nuclear hydrogen projects to support clean energy transition: updates on international initiatives and IAEA activities.
                    Int. J. Hydrogen. Energy. 2024, 54, 768-79.  DOI
               5.       Kumar S, Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy. Rep. 2022, 8, 13793-813.
                    DOI
               6.       Jolaoso, L. A.; Bello, I. T.; Ojelade, O. A.; Yousuf, A.; Duan, C.; Kazempoor, P. Operational and scaling-up barriers of SOEC and
                    mitigation strategies to boost H  production- a comprehensive review. Int. J. Hydrogen. Energy. 2023, 48, 33017-41.  DOI
                                        2
               7.       Royer, S.; Duprez, D.; Can, F.; et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem.
                    Rev. 2014, 114, 10292-368.  DOI  PubMed
               8.       Sun, C.; Alonso, J. A.; Bian, J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv.
                    Energy. Mater. 2021, 11, 2000459.  DOI
               9.       Lei, L.; Zhang, J.; Yuan, Z.; Liu, J.; Ni, M.; Chen, F. Progress report on proton conducting solid oxide electrolysis cells. Adv. Funct.
                    Mater. 2019, 29, 1903805.  DOI
               10.       Guan, S.; Shang, C.; Liu, Z. Resolving the temperature and composition dependence of ion conductivity for yttria-stabilized zirconia
                    from machine learning simulation. J. Phys. Chem. C. 2020, 124, 15085-93.  DOI
   89   90   91   92   93   94   95   96   97   98   99