Page 95 - Read Online
P. 95
Page 22 of 27 Chen et al. Energy Mater. 2025, 5, 500045 https://dx.doi.org/10.20517/energymater.2024.144
11. Liu, Y.; Shao, Z.; Mori, T.; Jiang, S. P. Development of nickel based cermet anode materials in solid oxide fuel cells - now and
future. Mater. Rep. Energy. 2021, 1, 100003. DOI
12. Skafte, T. L.; Guan, Z.; Machala, M. L.; et al. Selective high-temperature CO electrolysis enabled by oxidized carbon intermediates.
2
Nat. Energy. 2019, 4, 846-55. DOI
13. Opitz, A. K.; Nenning, A.; Rameshan, C.; et al. Surface chemistry of perovskite-type electrodes during high temperature CO
2
electrolysis investigated by operando photoelectron spectroscopy. ACS. Appl. Mater. Interfaces. 2017, 9, 35847-60. DOI PubMed
PMC
14. Tang, Y.; Liu, J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. Int. J.
Hydrogen. Energy. 2010, 35, 11188-93. DOI
15. Yang, Y.; Wang, Y.; Yang, Z.; Chen, Y.; Peng, S. A highly active and durable electrode with in situ exsolved Co nanoparticles for
solid oxide electrolysis cells. J. Power. Sources. 2020, 478, 229082. DOI
16. Wang, S.; Inoishi, A.; Hong, J.; et al. Ni-Fe bimetallic cathodes for intermediate temperature CO electrolyzers using a
2
La Sr Ga Mg O electrolyte. J. Mater. Chem. A. 2013, 1, 12455. DOI
0.2
3
0.9
0.1
0.8
17. Unachukwu, I. D.; Vibhu, V.; Vinke, I. C.; Eichel, R.; de Haart, L. Electrochemical and degradation behaviour of single cells
comprising Ni-GDC fuel electrode under high temperature steam- and co-electrolysis conditions. J. Power. Sources. 2023, 556,
232436. DOI
18. Zheng, M.; Wang, S.; Yang, Y.; Xia, C. Barium carbonate as a synergistic catalyst for the H O/CO reduction reaction at Ni-yttria
2 2
stabilized zirconia cathodes for solid oxide electrolysis cells. J. Mater. Chem. A. 2018, 6, 2721-9. DOI
19. Uchida, H.; Nishino, H.; Puengjinda, P.; Kakinuma, K. Remarkably improved durability of Ni-Co dispersed Samaria-doped ceria
hydrogen electrodes by reversible cycling operation of solid oxide cells. J. Electrochem. Soc. 2020, 167, 134516. DOI
20. Puengjinda, P.; Nishino, H.; Kakinuma, K.; Brito, M. E.; Uchida, H. Effect of microstructure on performance of double-layer
hydrogen electrodes for reversible SOEC/SOFC. J. Electrochem. Soc. 2017, 164, F889-94. DOI
21. Zhou, Y.; Wei, F.; Wu, H. Fe-decorated on Sm-doped CeO as cathodes for high-temperature CO electrolysis in solid oxide
2
2
electrolysis cells. Electrochim. Acta. 2022, 419, 140434. DOI
22. Kumari, N.; Tiwari, P. K.; Haider, M. A.; Basu, S. Electrochemical performance of infiltrated Cu-GDC and Cu-PDC cathode for CO
2
electrolysis in a solid oxide cell. ECS. Trans. 2017, 78, 3329-37. DOI
23. Lu, L.; Liu, W.; Wang, J.; et al. Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis
cell based on double-sided air electrodes. Appl. Energy. 2020, 259, 114130. DOI
24. Ding, S.; Li, M.; Pang, W.; et al. A-site deficient perovskite with nano-socketed Ni-Fe alloy particles as highly active and durable
catalyst for high-temperature CO electrolysis. Electrochim. Acta. 2020, 335, 135683. DOI
2
25. Deka, D. J.; Kim, J.; Gunduz, S.; Ferree, M.; Co, A. C.; Ozkan, U. S. Temperature-induced changes in the synthesis gas composition
in a high-temperature H O and CO co-electrolysis system. Appl. Catal. A. Gen. 2020, 602, 117697. DOI
2 2
26. Jin, C.; Yang, C.; Zhao, F.; Cui, D.; Chen, F. La Sr Cr Mn O as hydrogen electrode for solid oxide electrolysis cells. Int. J.
0.75 0.25 0.5 0.5 3
Hydrogen. Energy. 2011, 36, 3340-6. DOI
27. Lay, E.; Gauthier, G.; Dessemond, L. Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC
anode or SOEC cathode materials. Solid. State. Ion. 2011, 189, 91-9. DOI
28. Li, Y.; Gan, Y.; Wang, Y.; Xie, K.; Wu, Y. Composite cathode based on Ni-loaded La 0.75 Sr 0.25 Cr Mn O for direct steam
0.5
3-δ
0.5
electrolysis in an oxide-ion-conducting solid oxide electrolyzer. Int. J. Hydrogen. Energy. 2013, 38, 10196-207. DOI
29. Ruan, C.; Xie, K.; Yang, L.; Ding, B.; Wu, Y. Efficient carbon dioxide electrolysis in a symmetric solid oxide electrolyzer based on
nanocatalyst-loaded chromate electrodes. Int. J. Hydrogen. Energy. 2014, 39, 10338-48. DOI
30. Falcón, H.; Barbero, J. A.; Alonso, J. A.; Martínez-lope, M. J.; Fierro, J. L. G. SrFeO perovskite oxides: chemical features and
3-δ
performance for methane combustion. Chem. Mater. 2002, 14, 2325-33. DOI
31. Zhu, C.; Hou, S.; Hou, L.; Xie, K. Perovskite SrFeO decorated with Ni nanoparticles for high temperature carbon dioxide
3-δ
electrolysis. Int. J. Hydrogen. Energy. 2018, 43, 17040-7. DOI
32. Ishihara, T.; Wu, K.; Wang, S. (Invited) High temperature CO electrolysis on La(Sr)Fe(Mn)O oxide cathode by using LaGaO 3
2
3
based electrolyte. ECS. Trans. 2015, 66, 197-205. DOI
33. Zhang, W.; Wei, J.; Yin, F.; Sun, C. Recent advances in carbon-resistant anodes for solid oxide fuel cells. Mater. Chem. Front. 2023,
7, 1943-91. DOI
34. Li, Y.; Wu, G.; Ruan, C.; et al. Composite cathode based on doped vanadate enhanced with loaded metal nanoparticles for steam
electrolysis. J. Power. Sources. 2014, 253, 349-59. DOI
35. Pudmich, G. Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells. Solid. State. Ion. 2000, 135, 433-
8. DOI
36. Li, Y.; Zhou, J.; Dong, D.; et al. Composite fuel electrode La Sr TiO -Ce Sm O for electrolysis of CO in an oxygen-ion
2-δ
2
0.2
3-δ
0.2
0.8
0.8
conducting solid oxide electrolyser. Phys. Chem. Chem. Phys. 2012, 14, 15547-53. DOI
37. Yang, L.; Xie, K.; Xu, S.; et al. Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst
for high-temperature direct steam electrolysis. Dalton. Trans. 2014, 43, 14147-57. DOI
38. He, B.; Zhao, L.; Song, S.; Liu, T.; Chen, F.; Xia, C. Sr Fe Mo O -Sm Ce O composite anodes for intermediate-temperature
2 1.5 0.5 6-δ 0.2 0.8 1.9
solid oxide fuel cells. J. Electrochem. Soc. 2012, 159, B619-26. DOI
39. Xi, X.; Liu, J.; Luo, W.; et al. Unraveling the enhanced kinetics of Sr Fe Mo O electrocatalysts for high-performance solid oxide
2 1+x 1-x 6-δ