Page 95 - Read Online
P. 95

Page 22 of 27          Chen et al. Energy Mater. 2025, 5, 500045  https://dx.doi.org/10.20517/energymater.2024.144

               11.       Liu, Y.; Shao, Z.; Mori, T.; Jiang, S. P. Development of nickel based cermet anode materials in solid oxide fuel cells - now and
                    future. Mater. Rep. Energy. 2021, 1, 100003.  DOI
               12.       Skafte, T. L.; Guan, Z.; Machala, M. L.; et al. Selective high-temperature CO  electrolysis enabled by oxidized carbon intermediates.
                                                                      2
                    Nat. Energy. 2019, 4, 846-55.  DOI
               13.       Opitz, A. K.; Nenning, A.; Rameshan, C.; et al. Surface chemistry of perovskite-type electrodes during high temperature CO
                                                                                                         2
                    electrolysis investigated by operando photoelectron spectroscopy. ACS. Appl. Mater. Interfaces. 2017, 9, 35847-60.  DOI  PubMed
                    PMC
               14.       Tang, Y.; Liu, J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. Int. J.
                    Hydrogen. Energy. 2010, 35, 11188-93.  DOI
               15.       Yang, Y.; Wang, Y.; Yang, Z.; Chen, Y.; Peng, S. A highly active and durable electrode with in situ exsolved Co nanoparticles for
                    solid oxide electrolysis cells. J. Power. Sources. 2020, 478, 229082.  DOI
               16.       Wang, S.; Inoishi, A.; Hong, J.; et al. Ni-Fe bimetallic cathodes for intermediate temperature  CO  electrolyzers using a
                                                                                          2
                    La Sr Ga Mg O  electrolyte. J. Mater. Chem. A. 2013, 1, 12455.  DOI
                               0.2
                                 3
                      0.9
                        0.1
                           0.8
               17.       Unachukwu, I. D.; Vibhu, V.; Vinke, I. C.; Eichel, R.; de Haart, L. Electrochemical and degradation behaviour of single cells
                    comprising Ni-GDC fuel electrode under high temperature steam- and co-electrolysis conditions. J. Power. Sources. 2023, 556,
                    232436.  DOI
               18.       Zheng, M.; Wang, S.; Yang, Y.; Xia, C. Barium carbonate as a synergistic catalyst for the H O/CO  reduction reaction at Ni-yttria
                                                                                 2   2
                    stabilized zirconia cathodes for solid oxide electrolysis cells. J. Mater. Chem. A. 2018, 6, 2721-9.  DOI
               19.       Uchida, H.; Nishino, H.; Puengjinda, P.; Kakinuma, K. Remarkably improved durability of Ni-Co dispersed Samaria-doped ceria
                    hydrogen electrodes by reversible cycling operation of solid oxide cells. J. Electrochem. Soc. 2020, 167, 134516.  DOI
               20.       Puengjinda, P.; Nishino, H.; Kakinuma, K.; Brito, M. E.; Uchida, H. Effect of microstructure on performance of double-layer
                    hydrogen electrodes for reversible SOEC/SOFC. J. Electrochem. Soc. 2017, 164, F889-94.  DOI
               21.       Zhou, Y.; Wei, F.; Wu, H. Fe-decorated on Sm-doped CeO  as cathodes for high-temperature CO  electrolysis in solid oxide
                                                             2
                                                                                       2
                    electrolysis cells. Electrochim. Acta. 2022, 419, 140434.  DOI
               22.       Kumari, N.; Tiwari, P. K.; Haider, M. A.; Basu, S. Electrochemical performance of infiltrated Cu-GDC and Cu-PDC cathode for CO
                                                                                                         2
                    electrolysis in a solid oxide cell. ECS. Trans. 2017, 78, 3329-37.  DOI
               23.       Lu, L.; Liu, W.; Wang, J.; et al. Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis
                    cell based on double-sided air electrodes. Appl. Energy. 2020, 259, 114130.  DOI
               24.       Ding, S.; Li, M.; Pang, W.; et al. A-site deficient perovskite with nano-socketed Ni-Fe alloy particles as highly active and durable
                    catalyst for high-temperature CO  electrolysis. Electrochim. Acta. 2020, 335, 135683.  DOI
                                         2
               25.       Deka, D. J.; Kim, J.; Gunduz, S.; Ferree, M.; Co, A. C.; Ozkan, U. S. Temperature-induced changes in the synthesis gas composition
                    in a high-temperature H O and CO  co-electrolysis system. Appl. Catal. A. Gen. 2020, 602, 117697.  DOI
                                   2      2
               26.       Jin, C.; Yang, C.; Zhao, F.; Cui, D.; Chen, F. La  Sr  Cr Mn O  as hydrogen electrode for solid oxide electrolysis cells. Int. J.
                                                    0.75  0.25  0.5  0.5  3
                    Hydrogen. Energy. 2011, 36, 3340-6.  DOI
               27.       Lay, E.; Gauthier, G.; Dessemond, L. Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC
                    anode or SOEC cathode materials. Solid. State. Ion. 2011, 189, 91-9.  DOI
               28.       Li, Y.; Gan, Y.; Wang, Y.; Xie, K.; Wu, Y. Composite cathode based on Ni-loaded La 0.75 Sr 0.25 Cr Mn O  for direct steam
                                                                                       0.5
                                                                                             3-δ
                                                                                          0.5
                    electrolysis in an oxide-ion-conducting solid oxide electrolyzer. Int. J. Hydrogen. Energy. 2013, 38, 10196-207.  DOI
               29.       Ruan, C.; Xie, K.; Yang, L.; Ding, B.; Wu, Y. Efficient carbon dioxide electrolysis in a symmetric solid oxide electrolyzer based on
                    nanocatalyst-loaded chromate electrodes. Int. J. Hydrogen. Energy. 2014, 39, 10338-48.  DOI
               30.       Falcón, H.; Barbero, J. A.; Alonso, J. A.; Martínez-lope, M. J.; Fierro, J. L. G. SrFeO  perovskite oxides:  chemical features and
                                                                             3-δ
                    performance for methane combustion. Chem. Mater. 2002, 14, 2325-33.  DOI
               31.       Zhu, C.; Hou, S.; Hou, L.; Xie, K. Perovskite SrFeO  decorated with Ni nanoparticles for high temperature carbon dioxide
                                                        3-δ
                    electrolysis. Int. J. Hydrogen. Energy. 2018, 43, 17040-7.  DOI
               32.       Ishihara, T.; Wu, K.; Wang, S. (Invited) High temperature CO  electrolysis on La(Sr)Fe(Mn)O  oxide cathode by using LaGaO   3
                                                              2
                                                                                    3
                    based electrolyte. ECS. Trans. 2015, 66, 197-205.  DOI
               33.       Zhang, W.; Wei, J.; Yin, F.; Sun, C. Recent advances in carbon-resistant anodes for solid oxide fuel cells. Mater. Chem. Front. 2023,
                    7, 1943-91.  DOI
               34.       Li, Y.; Wu, G.; Ruan, C.; et al. Composite cathode based on doped vanadate enhanced with loaded metal nanoparticles for steam
                    electrolysis. J. Power. Sources. 2014, 253, 349-59.  DOI
               35.       Pudmich, G. Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells. Solid. State. Ion. 2000, 135, 433-
                    8.  DOI
               36.       Li, Y.; Zhou, J.; Dong, D.; et al. Composite fuel electrode La Sr TiO -Ce Sm O  for electrolysis of CO  in an oxygen-ion
                                                                             2-δ
                                                                                              2
                                                                           0.2
                                                                    3-δ
                                                             0.2
                                                                0.8
                                                                       0.8
                    conducting solid oxide electrolyser. Phys. Chem. Chem. Phys. 2012, 14, 15547-53.  DOI
               37.       Yang, L.; Xie, K.; Xu, S.; et al. Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst
                    for high-temperature direct steam electrolysis. Dalton. Trans. 2014, 43, 14147-57.  DOI
               38.       He, B.; Zhao, L.; Song, S.; Liu, T.; Chen, F.; Xia, C. Sr Fe Mo O -Sm Ce O  composite anodes for intermediate-temperature
                                                        2  1.5  0.5  6-δ  0.2  0.8  1.9
                    solid oxide fuel cells. J. Electrochem. Soc. 2012, 159, B619-26.  DOI
               39.       Xi, X.; Liu, J.; Luo, W.; et al. Unraveling the enhanced kinetics of Sr Fe Mo O  electrocatalysts for high-performance solid oxide
                                                                2  1+x  1-x  6-δ
   90   91   92   93   94   95   96   97   98   99   100