Page 99 - Read Online
P. 99
Page 26 of 27 Chen et al. Energy Mater. 2025, 5, 500045 https://dx.doi.org/10.20517/energymater.2024.144
127. Lyagaeva, J.; Danilov, N.; Vdovin, G.; et al. A new Dy-doped BaCeO -BaZrO proton-conducting material as a promising electrolyte
3
3
for reversible solid oxide fuel cells. J. Mater. Chem. A. 2016, 4, 15390-9. DOI
128. Yang, S.; Wen, Y.; Zhang, S.; Gu, S.; Wen, Z.; Ye, X. Performance and stability of BaCe 0.8-x Zr InxO -based materials and
3-δ
0.2
reversible solid oxide cells working at intermediate temperature. Int. J. Hydrogen. Energy. 2017, 42, 28549-58. DOI
2+
129. Yang, S.; Zhang, S.; Sun, C.; Ye, X.; Wen, Z. Lattice incorporation of Cu into the BaCe Zr Y Yb O electrolyte on boosting
0.7 0.1 0.1 0.1 3-δ
its sintering and proton-conducting abilities for reversible solid oxide cells. ACS. Appl. Mater. Interfaces. 2018, 10, 42387-96. DOI
130. Golkhatmi S, Asghar MI, Lund PD. A review on solid oxide fuel cell durability: latest progress, mechanisms, and study tools. Renew.
Sustain. Energy. Rev. 2022, 161, 112339. DOI
131. Park, S.; Craciun, R.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. methane oxidation. J.
Electrochem. Soc. 1999, 146, 3603-5. DOI
132. Wehrle, L.; Schmider, D.; Dailly, J.; Banerjee, A.; Deutschmann, O. Benchmarking solid oxide electrolysis cell-stacks for industrial
Power-to-Methane systems via hierarchical multi-scale modelling. Appl. Energy. 2022, 317, 119143. DOI
133. Li, T.; Wang, T.; Wei, T.; et al. Robust anode-supported cells with fast oxygen release channels for efficient and stable CO
2
electrolysis at ultrahigh current densities. Small 2021, 17, e2007211. DOI
134. Zhou, J.; Ma, Z.; Zhang, L.; et al. Study of CO and H O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell
2 2
by aqueous tape casting technique. Int. J. Hydrogen. Energy. 2019, 44, 28939-46. DOI
135. Rorato, L.; Shang, Y.; Yang, S.; et al. Understanding the Ni migration in solid oxide cell: a coupled experimental and modeling
approach. J. Electrochem. Soc. 2023, 170, 034504. DOI
136. Dasari, H. P.; Park, S.; Kim, J.; et al. Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen
production in solid oxide electrolysis cells. J. Power. Sources. 2013, 240, 721-8. DOI
137. Chen, D.; Barreau, M.; Dintzer, T.; et al. Surface oxidation of Ni-cermet electrodes by CO and H O and how to moderate it. J.
2 2
Energy. Chem. 2022, 67, 300-8. DOI
138. Graves, C.; Ebbesen, S. D.; Mogensen, M. Co-electrolysis of CO and H O in solid oxide cells: performance and durability. Solid.
2 2
State. Ion. 2011, 192, 398-403. DOI
139. Min, K.; Sun, C. W.; Qu, W.; et al. Electrochemical properties of low-temperature solid oxide fuel cells under chromium poisoning
conditions. Int. J. Green. Energy. 2009, 6, 627-37. DOI
140. Bi, J.; Yang, S.; Zhong, S.; et al. An insight into the effects of B-site transition metals on the activity, activation effect and stability of
perovskite oxygen electrodes for solid oxide electrolysis cells. J. Power. Sources. 2017, 363, 470-9. DOI
141. Chen, K.; Hyodo, J.; Ai, N.; Ishihara, T.; Jiang, S. P. Boron deposition and poisoning of La Sr MnO oxygen electrodes of solid
0.8 0.2 3
oxide electrolysis cells under accelerated operation conditions. Int. J. Hydrogen. Energy. 2016, 41, 1419-31. DOI
142. Wang, C. C.; Chen, K.; Jiang, T.; et al. Sulphur poisoning of solid oxide electrolysis cell anodes. Electrochim. Acta. 2018, 269, 188-
95. DOI
143. Riegraf, M.; Han, F.; Sata, N.; Costa, R. Intercalation of thin-film Gd-doped ceria barrier layers in electrolyte-supported solid oxide
cells: physicochemical aspects. ACS. Appl. Mater. Interfaces. 2021, 13, 37239-51. DOI PubMed
144. Laurencin, J.; Hubert, M.; Sanchez, D. F.; et al. Degradation mechanism of La Sr Co Fe O /Gd Ce O composite electrode
0.4
0.2
0.1
0.9
0.6
3-δ
0.8
2-δ
operated under solid oxide electrolysis and fuel cell conditions. Electrochim. Acta. 2017, 241, 459-76. DOI
145. Ai, N.; He, S.; Li, N.; et al. Suppressed Sr segregation and performance of directly assembled La Sr Co Fe O oxygen electrode
0.6 0.4 0.2 0.8 3-δ
on Y O -ZrO electrolyte of solid oxide electrolysis cells. J. Power. Sources. 2018, 384, 125-35. DOI
2 3 2
146. Kim, J.; Ji, H.; Dasari, H. P.; et al. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating
at high polarization. Int. J. Hydrogen. Energy. 2013, 38, 1225-35. DOI
147. Laguna-Bercero, M.; Campana, R.; Larrea, A.; Kilner, J.; Orera, V. Electrolyte degradation in anode supported microtubular yttria
stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation. J. Power. Sources. 2011, 196, 8942-7.
DOI
148. Zakaria, Z.; Kamarudin, S. K. Advanced modification of scandia-stabilized zirconia electrolytes for solid oxide fuel cells application-
A review. Int. J. Energy. Res. 2021, 45, 4871-87. DOI
149. Laguna-bercero, M. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power. Sources. 2012,
203, 4-16. DOI
150. Zhang, Z.; Guan, C.; Xie, L.; Wang, J. Design and analysis of a novel opposite trapezoidal flow channel for solid oxide electrolysis
cell stack. Energies 2023, 16, 159. DOI
151. Yao, Y.; Ma, Y.; Wang, C.; et al. A cofuel channel microtubular solid oxide fuel/electrolysis cell. Appl. Energy. 2022, 327, 120010.
DOI
152. Park, S.; Sammes, N. M.; Song, K.; Kim, T.; Chung, J. Monolithic flat tubular types of solid oxide fuel cells with integrated electrode
and gas channels. Int. J. Hydrogen. Energy. 2017, 42, 1154-60. DOI
153. Houaijia, A.; Breuer, S.; Thomey, D.; et al. Solar hydrogen by high-temperature electrolysis: flowsheeting and experimental analysis
of a tube-type receiver concept for superheated steam production. Energy. Procedia. 2014, 49, 1960-9. DOI
154. Kong, R.; Zhang, R.; Li, H.; Wu, Y.; Sun, Z.; Sun, Z. A new pathway to produce hydrogen with CO capture from blast furnace gas
via SOFC-SOEC integration. Energy. Convers. Manag. 2022, 271, 116278. DOI
155. Xu, H.; Maroto-Valer, M. M.; Ni, M.; Cao, J.; Xuan, J. Low carbon fuel production from combined solid oxide CO co-electrolysis
2
and Fischer-Tropsch synthesis system: a modelling study. Appl. Energy. 2019, 242, 911-8. DOI