Page 99 - Read Online
P. 99

Page 26 of 27          Chen et al. Energy Mater. 2025, 5, 500045  https://dx.doi.org/10.20517/energymater.2024.144

               127.      Lyagaeva, J.; Danilov, N.; Vdovin, G.; et al. A new Dy-doped BaCeO -BaZrO  proton-conducting material as a promising electrolyte
                                                                 3
                                                                      3
                    for reversible solid oxide fuel cells. J. Mater. Chem. A. 2016, 4, 15390-9.  DOI
               128.      Yang, S.; Wen, Y.; Zhang, S.; Gu, S.; Wen, Z.; Ye, X. Performance and stability of BaCe 0.8-x Zr InxO -based materials and
                                                                                          3-δ
                                                                                      0.2
                    reversible solid oxide cells working at intermediate temperature. Int. J. Hydrogen. Energy. 2017, 42, 28549-58.  DOI
                                                                    2+
               129.      Yang, S.; Zhang, S.; Sun, C.; Ye, X.; Wen, Z. Lattice incorporation of Cu into the BaCe Zr Y Yb O  electrolyte on boosting
                                                                              0.7  0.1  0.1  0.1  3-δ
                    its sintering and proton-conducting abilities for reversible solid oxide cells. ACS. Appl. Mater. Interfaces. 2018, 10, 42387-96.  DOI
               130.      Golkhatmi S, Asghar MI, Lund PD. A review on solid oxide fuel cell durability: latest progress, mechanisms, and study tools. Renew.
                    Sustain. Energy. Rev. 2022, 161, 112339.  DOI
               131.      Park, S.; Craciun, R.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. methane oxidation. J.
                    Electrochem. Soc. 1999, 146, 3603-5.  DOI
               132.      Wehrle, L.; Schmider, D.; Dailly, J.; Banerjee, A.; Deutschmann, O. Benchmarking solid oxide electrolysis cell-stacks for industrial
                    Power-to-Methane systems via hierarchical multi-scale modelling. Appl. Energy. 2022, 317, 119143.  DOI
               133.      Li, T.; Wang, T.; Wei, T.; et al. Robust anode-supported cells with fast oxygen release channels for efficient and stable CO
                                                                                                         2
                    electrolysis at ultrahigh current densities. Small 2021, 17, e2007211.  DOI
               134.      Zhou, J.; Ma, Z.; Zhang, L.; et al. Study of CO  and H O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell
                                                  2    2
                    by aqueous tape casting technique. Int. J. Hydrogen. Energy. 2019, 44, 28939-46.  DOI
               135.      Rorato, L.; Shang, Y.; Yang, S.; et al. Understanding the Ni migration in solid oxide cell: a coupled experimental and modeling
                    approach. J. Electrochem. Soc. 2023, 170, 034504.  DOI
               136.      Dasari, H. P.; Park, S.; Kim, J.; et al. Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen
                    production in solid oxide electrolysis cells. J. Power. Sources. 2013, 240, 721-8.  DOI
               137.      Chen, D.; Barreau, M.; Dintzer, T.; et al. Surface oxidation of Ni-cermet electrodes by CO  and H O and how to moderate it. J.
                                                                                 2    2
                    Energy. Chem. 2022, 67, 300-8.  DOI
               138.      Graves, C.; Ebbesen, S. D.; Mogensen, M. Co-electrolysis of CO  and H O in solid oxide cells: performance and durability. Solid.
                                                               2    2
                    State. Ion. 2011, 192, 398-403.  DOI
               139.      Min, K.; Sun, C. W.; Qu, W.; et al. Electrochemical properties of low-temperature solid oxide fuel cells under chromium poisoning
                    conditions. Int. J. Green. Energy. 2009, 6, 627-37.  DOI
               140.      Bi, J.; Yang, S.; Zhong, S.; et al. An insight into the effects of B-site transition metals on the activity, activation effect and stability of
                    perovskite oxygen electrodes for solid oxide electrolysis cells. J. Power. Sources. 2017, 363, 470-9.  DOI
               141.      Chen, K.; Hyodo, J.; Ai, N.; Ishihara, T.; Jiang, S. P. Boron deposition and poisoning of La Sr MnO  oxygen electrodes of solid
                                                                                0.8  0.2  3
                    oxide electrolysis cells under accelerated operation conditions. Int. J. Hydrogen. Energy. 2016, 41, 1419-31.  DOI
               142.      Wang, C. C.; Chen, K.; Jiang, T.; et al. Sulphur poisoning of solid oxide electrolysis cell anodes. Electrochim. Acta. 2018, 269, 188-
                    95.  DOI
               143.      Riegraf, M.; Han, F.; Sata, N.; Costa, R. Intercalation of thin-film Gd-doped ceria barrier layers in electrolyte-supported solid oxide
                    cells: physicochemical aspects. ACS. Appl. Mater. Interfaces. 2021, 13, 37239-51.  DOI  PubMed
               144.      Laurencin, J.; Hubert, M.; Sanchez, D. F.; et al. Degradation mechanism of La Sr Co Fe O /Gd Ce O  composite electrode
                                                                         0.4
                                                                             0.2
                                                                                      0.1
                                                                                         0.9
                                                                       0.6
                                                                                  3-δ
                                                                               0.8
                                                                                           2-δ
                    operated under solid oxide electrolysis and fuel cell conditions. Electrochim. Acta. 2017, 241, 459-76.  DOI
               145.      Ai, N.; He, S.; Li, N.; et al. Suppressed Sr segregation and performance of directly assembled La Sr Co Fe O  oxygen electrode
                                                                                  0.6  0.4  0.2  0.8  3-δ
                    on Y O -ZrO  electrolyte of solid oxide electrolysis cells. J. Power. Sources. 2018, 384, 125-35.  DOI
                       2  3  2
               146.      Kim, J.; Ji, H.; Dasari, H. P.; et al. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating
                    at high polarization. Int. J. Hydrogen. Energy. 2013, 38, 1225-35.  DOI
               147.      Laguna-Bercero, M.; Campana, R.; Larrea, A.; Kilner, J.; Orera, V. Electrolyte degradation in anode supported microtubular yttria
                    stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation. J. Power. Sources. 2011, 196, 8942-7.
                    DOI
               148.      Zakaria, Z.; Kamarudin, S. K. Advanced modification of scandia-stabilized zirconia electrolytes for solid oxide fuel cells application-
                    A review. Int. J. Energy. Res. 2021, 45, 4871-87.  DOI
               149.      Laguna-bercero, M. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power. Sources. 2012,
                    203, 4-16.  DOI
               150.      Zhang, Z.; Guan, C.; Xie, L.; Wang, J. Design and analysis of a novel opposite trapezoidal flow channel for solid oxide electrolysis
                    cell stack. Energies 2023, 16, 159.  DOI
               151.      Yao, Y.; Ma, Y.; Wang, C.; et al. A cofuel channel microtubular solid oxide fuel/electrolysis cell. Appl. Energy. 2022, 327, 120010.
                    DOI
               152.      Park, S.; Sammes, N. M.; Song, K.; Kim, T.; Chung, J. Monolithic flat tubular types of solid oxide fuel cells with integrated electrode
                    and gas channels. Int. J. Hydrogen. Energy. 2017, 42, 1154-60.  DOI
               153.      Houaijia, A.; Breuer, S.; Thomey, D.; et al. Solar hydrogen by high-temperature electrolysis: flowsheeting and experimental analysis
                    of a tube-type receiver concept for superheated steam production. Energy. Procedia. 2014, 49, 1960-9.  DOI
               154.      Kong, R.; Zhang, R.; Li, H.; Wu, Y.; Sun, Z.; Sun, Z. A new pathway to produce hydrogen with CO capture from blast furnace gas
                    via SOFC-SOEC integration. Energy. Convers. Manag. 2022, 271, 116278.  DOI
               155.      Xu, H.; Maroto-Valer, M. M.; Ni, M.; Cao, J.; Xuan, J. Low carbon fuel production from combined solid oxide CO  co-electrolysis
                                                                                               2
                    and Fischer-Tropsch synthesis system: a modelling study. Appl. Energy. 2019, 242, 911-8.  DOI
   94   95   96   97   98   99   100   101   102   103   104