Page 96 - Read Online
P. 96

Chen et al. Energy Mater. 2025, 5, 500045  https://dx.doi.org/10.20517/energymater.2024.144  Page 23 of 27

                    cells. Adv. Energy. Mater. 2021, 11, 2102845.  DOI
               40.       Ge, B.; Ma, J.; Ai, D.; Deng, C.; Lin, X.; Xu, J. Sr FeNbO  applied in solid oxide electrolysis cell as the hydrogen electrode: kinetic
                                                     2
                                                          6
                    studies by comparison with Ni-YSZ. Electrochim. Acta. 2015, 151, 437-46.  DOI
               41.       Zhang, L.; Sun, W.; Xu, C.; et al. Two-fold improvement in chemical adsorption ability to achieve effective carbon dioxide
                    electrolysis. Appl. Catal. B. Environ. 2022, 317, 121754.  DOI
               42.       Kamlungsua, K.; Su, P. Moisture-dependent electrochemical characterization of Ba Sr Fe Mo O  as the fuel electrode for solid
                                                                          0.2  1.8  1.5  0.5  6-δ
                    oxide electrolysis cells (SOECs). Electrochim. Acta. 2020, 355, 136670.  DOI
               43.       Li, Y.; Li, Y.; Wan, Y.; et al. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent
                    electrochemical performances. Adv. Energy. Mater. 2019, 9, 1803156.  DOI
               44.       Sengodan, S.; Choi, S.; Jun, A.; et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct
                    hydrocarbon solid oxide fuel cells. Nat. Mater. 2015, 14, 205-9.  DOI
               45.       Lu, C.; Niu, B.; Yi, W.; Ji, Y.; Xu, B. Efficient symmetrical electrodes of PrBaFe Co O  (x = 0, 0.2, 0.4) for solid oxide fuel cells
                                                                              5+δ
                                                                            x
                                                                         2-x
                    and solid oxide electrolysis cells. Electrochim. Acta. 2020, 358, 136916.  DOI
               46.       Qi, W.; Zhang, Y.; Cui, J.; Shu, X.; Wang, Y.; Wu, Y. In-situ constructing NiO nanoplatelets network on La  Sr  Mn Cr O
                                                                                            0.75  0.25  0.5  0.5  3-δ
                    electrode with enhanced steam electrolysis. Int. J. Hydrogen. Energy. 2017, 42, 5657-66.  DOI
               47.       Xu, S.; Chen, S.; Li, M.; Xie, K.; Wang, Y.; Wu, Y. Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-
                    ion-conducting solid oxide electrolyser. J. Power. Sources. 2013, 239, 332-40.  DOI
               48.       Xu, S.; Dong, D.; Wang, Y.; Doherty, W.; Xie, K.; Wu, Y. Perovskite chromates cathode with resolved and anchored nickel nano-
                    particles for direct high-temperature steam electrolysis. J. Power. Sources. 2014, 246, 346-55.  DOI
               49.       Yang, X.; Sun, K.; Ma, M.; et al. Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis. Appl. Catal.
                    B. Environ. 2020, 272, 118968.  DOI
               50.       Hosoi, K.; Hagiwara, H.; Ida, S.; Ishihara, T. La Sr FeO  as fuel electrode for solid oxide reversible cells using LaGaO -based
                                                    0.8  0.2  3-δ                                    3
                    oxide electrolyte. J. Phys. Chem. C. 2016, 120, 16110-7.  DOI
               51.       Tian, Y.; Liu, Y.; Jia, L.; et al. A novel electrode with multifunction and regeneration for highly efficient and stable symmetrical solid
                    oxide cell. J. Power. Sources. 2020, 475, 228620.  DOI
               52.       Choi, J.; Park, S.; Han, H.; et al. Highly efficient CO  electrolysis to CO on Ruddlesden-Popper perovskite oxide with in situ
                                                         2
                    exsolved Fe nanoparticles. J. Mater. Chem. A. 2021, 9, 8740-8.  DOI
               53.       Shin, T. H.; Myung, J. H.; Verbraeken, M.; Kim, G.; Irvine, J. T. Oxygen deficient layered double perovskite as an active cathode for
                    CO  electrolysis using a solid oxide conductor. Faraday. Discuss. 2015, 182, 227-39.  DOI
                      2
               54.       Zhang, L.; Zhu, X.; Cao, Z.; et al. Pr and Ti co-doped strontium ferrite as a novel hydrogen electrode for solid oxide electrolysis cell.
                    Electrochim. Acta. 2017, 232, 542-9.  DOI
               55.       Liu, S.; Liu, Q.; Luo, J. CO  -to-CO conversion on layered perovskite with in situ exsolved Co-Fe alloy nanoparticles: an active and
                                      2
                    stable cathode for solid oxide electrolysis cells. J. Mater. Chem. A. 2016, 4, 17521-8.  DOI
               56.       Tan, T.; Wang, Z.; Qin, M.; et al. In situ exsolution of core-shell structured NiFe/FeO  nanoparticles on Pr Sr (NiFe) Mo O  for
                                                                           x            0.4  1.6  1.5  0.5  6-δ
                    CO  electrolysis. Adv. Funct. Mater. 2022, 32, 2202878.  DOI
                      2
               57.       Wang, S.; Deng, S.; Hao, Z.; Hu, X.; Zheng, Y. Ca/Cu cdoped SmFeO  as a fuel electrode material for direct electrolysis of CO  in
                                                                  3
                                                                                                        2
                    SOECs. Fuel. Cells. 2020, 20, 682-9.  DOI
               58.       Zhang, J.; Xie, K.; Wei, H.; et al. In situ formation of oxygen vacancy in perovskite Sr 0.95 Ti Nb M O  (M = Mn, Cr) toward
                                                                                     0.1
                                                                                          3
                                                                                  0.8
                                                                                        0.1
                    efficient carbon dioxide electrolysis. Sci. Rep. 2014, 4, 7082.  DOI  PubMed  PMC
               59.       Zhang, S.; Wang, H.; Yang, T.; et al. Advanced oxygen-electrode-supported solid oxide electrochemical cells with Sr(Ti, Fe)O -
                                                                                                        3-δ
                    based fuel electrodes for electricity generation and hydrogen production. J. Mater. Chem. A. 2020, 8, 25867-79.  DOI
               60.       Gao, X.; Ye, L.; Xie, K. Voltage-driven reduction method to optimize in-situ exsolution of Fe nanoparticles at Sr Fe  Mo O
                                                                                               2  1.5+x  0.5  6-δ
                    interface. J. Power. Sources. 2023, 561, 232740.  DOI
               61.       He, F.; Hou, M.; Zhu, F.; et al. Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical
                    CO  reduction. Adv. Energy. Mater. 2022, 12, 2202175.  DOI
                      2
               62.       Sun, X.; Ye, Y.; Zhou, M.; et al. Layered-perovskite oxides with in situ exsolved Co-Fe alloy nanoparticles as highly efficient
                    electrodes for high-temperature carbon dioxide electrolysis. J. Mater. Chem. A. 2022, 10, 2327-35.  DOI
               63.       Hauch, A.; Küngas, R.; Blennow, P.; et al. Recent advances in solid oxide cell technology for electrolysis. Science 2020, 370,
                    eaba6118.  DOI
               64.       Jiang, S. P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater.
                    Sci. 2008, 43, 6799-833.  DOI
               65.       Tietz, F.; Sebold, D.; Brisse, A.; Schefold, J. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J.
                    Power. Sources. 2013, 223, 129-35.  DOI
               66.       Su, C.; Lü, Z.; Wang, C.; et al. Effects of a YSZ porous layer between electrolyte and oxygen electrode in solid oxide electrolysis
                    cells on the electrochemical performance and stability. Int. J. Hydrogen. Energy. 2019, 44, 14493-9.  DOI
               67.       Song, Y.; Zhang, X.; Zhou, Y.; et al. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified
                    LSM-YSZ anode. J. Energy. Chem. 2019, 35, 181-7.  DOI
               68.       Mahata, A.; Datta, P.; Basu, R. N. Synthesis and characterization of Ca doped LaMnO  as potential anode material for solid oxide
                                                                             3
                    electrolysis cells. Ceram. Int. 2017, 43, 433-8.  DOI
   91   92   93   94   95   96   97   98   99   100   101