Page 96 - Read Online
P. 96
Chen et al. Energy Mater. 2025, 5, 500045 https://dx.doi.org/10.20517/energymater.2024.144 Page 23 of 27
cells. Adv. Energy. Mater. 2021, 11, 2102845. DOI
40. Ge, B.; Ma, J.; Ai, D.; Deng, C.; Lin, X.; Xu, J. Sr FeNbO applied in solid oxide electrolysis cell as the hydrogen electrode: kinetic
2
6
studies by comparison with Ni-YSZ. Electrochim. Acta. 2015, 151, 437-46. DOI
41. Zhang, L.; Sun, W.; Xu, C.; et al. Two-fold improvement in chemical adsorption ability to achieve effective carbon dioxide
electrolysis. Appl. Catal. B. Environ. 2022, 317, 121754. DOI
42. Kamlungsua, K.; Su, P. Moisture-dependent electrochemical characterization of Ba Sr Fe Mo O as the fuel electrode for solid
0.2 1.8 1.5 0.5 6-δ
oxide electrolysis cells (SOECs). Electrochim. Acta. 2020, 355, 136670. DOI
43. Li, Y.; Li, Y.; Wan, Y.; et al. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent
electrochemical performances. Adv. Energy. Mater. 2019, 9, 1803156. DOI
44. Sengodan, S.; Choi, S.; Jun, A.; et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct
hydrocarbon solid oxide fuel cells. Nat. Mater. 2015, 14, 205-9. DOI
45. Lu, C.; Niu, B.; Yi, W.; Ji, Y.; Xu, B. Efficient symmetrical electrodes of PrBaFe Co O (x = 0, 0.2, 0.4) for solid oxide fuel cells
5+δ
x
2-x
and solid oxide electrolysis cells. Electrochim. Acta. 2020, 358, 136916. DOI
46. Qi, W.; Zhang, Y.; Cui, J.; Shu, X.; Wang, Y.; Wu, Y. In-situ constructing NiO nanoplatelets network on La Sr Mn Cr O
0.75 0.25 0.5 0.5 3-δ
electrode with enhanced steam electrolysis. Int. J. Hydrogen. Energy. 2017, 42, 5657-66. DOI
47. Xu, S.; Chen, S.; Li, M.; Xie, K.; Wang, Y.; Wu, Y. Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-
ion-conducting solid oxide electrolyser. J. Power. Sources. 2013, 239, 332-40. DOI
48. Xu, S.; Dong, D.; Wang, Y.; Doherty, W.; Xie, K.; Wu, Y. Perovskite chromates cathode with resolved and anchored nickel nano-
particles for direct high-temperature steam electrolysis. J. Power. Sources. 2014, 246, 346-55. DOI
49. Yang, X.; Sun, K.; Ma, M.; et al. Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis. Appl. Catal.
B. Environ. 2020, 272, 118968. DOI
50. Hosoi, K.; Hagiwara, H.; Ida, S.; Ishihara, T. La Sr FeO as fuel electrode for solid oxide reversible cells using LaGaO -based
0.8 0.2 3-δ 3
oxide electrolyte. J. Phys. Chem. C. 2016, 120, 16110-7. DOI
51. Tian, Y.; Liu, Y.; Jia, L.; et al. A novel electrode with multifunction and regeneration for highly efficient and stable symmetrical solid
oxide cell. J. Power. Sources. 2020, 475, 228620. DOI
52. Choi, J.; Park, S.; Han, H.; et al. Highly efficient CO electrolysis to CO on Ruddlesden-Popper perovskite oxide with in situ
2
exsolved Fe nanoparticles. J. Mater. Chem. A. 2021, 9, 8740-8. DOI
53. Shin, T. H.; Myung, J. H.; Verbraeken, M.; Kim, G.; Irvine, J. T. Oxygen deficient layered double perovskite as an active cathode for
CO electrolysis using a solid oxide conductor. Faraday. Discuss. 2015, 182, 227-39. DOI
2
54. Zhang, L.; Zhu, X.; Cao, Z.; et al. Pr and Ti co-doped strontium ferrite as a novel hydrogen electrode for solid oxide electrolysis cell.
Electrochim. Acta. 2017, 232, 542-9. DOI
55. Liu, S.; Liu, Q.; Luo, J. CO -to-CO conversion on layered perovskite with in situ exsolved Co-Fe alloy nanoparticles: an active and
2
stable cathode for solid oxide electrolysis cells. J. Mater. Chem. A. 2016, 4, 17521-8. DOI
56. Tan, T.; Wang, Z.; Qin, M.; et al. In situ exsolution of core-shell structured NiFe/FeO nanoparticles on Pr Sr (NiFe) Mo O for
x 0.4 1.6 1.5 0.5 6-δ
CO electrolysis. Adv. Funct. Mater. 2022, 32, 2202878. DOI
2
57. Wang, S.; Deng, S.; Hao, Z.; Hu, X.; Zheng, Y. Ca/Cu cdoped SmFeO as a fuel electrode material for direct electrolysis of CO in
3
2
SOECs. Fuel. Cells. 2020, 20, 682-9. DOI
58. Zhang, J.; Xie, K.; Wei, H.; et al. In situ formation of oxygen vacancy in perovskite Sr 0.95 Ti Nb M O (M = Mn, Cr) toward
0.1
3
0.8
0.1
efficient carbon dioxide electrolysis. Sci. Rep. 2014, 4, 7082. DOI PubMed PMC
59. Zhang, S.; Wang, H.; Yang, T.; et al. Advanced oxygen-electrode-supported solid oxide electrochemical cells with Sr(Ti, Fe)O -
3-δ
based fuel electrodes for electricity generation and hydrogen production. J. Mater. Chem. A. 2020, 8, 25867-79. DOI
60. Gao, X.; Ye, L.; Xie, K. Voltage-driven reduction method to optimize in-situ exsolution of Fe nanoparticles at Sr Fe Mo O
2 1.5+x 0.5 6-δ
interface. J. Power. Sources. 2023, 561, 232740. DOI
61. He, F.; Hou, M.; Zhu, F.; et al. Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical
CO reduction. Adv. Energy. Mater. 2022, 12, 2202175. DOI
2
62. Sun, X.; Ye, Y.; Zhou, M.; et al. Layered-perovskite oxides with in situ exsolved Co-Fe alloy nanoparticles as highly efficient
electrodes for high-temperature carbon dioxide electrolysis. J. Mater. Chem. A. 2022, 10, 2327-35. DOI
63. Hauch, A.; Küngas, R.; Blennow, P.; et al. Recent advances in solid oxide cell technology for electrolysis. Science 2020, 370,
eaba6118. DOI
64. Jiang, S. P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater.
Sci. 2008, 43, 6799-833. DOI
65. Tietz, F.; Sebold, D.; Brisse, A.; Schefold, J. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J.
Power. Sources. 2013, 223, 129-35. DOI
66. Su, C.; Lü, Z.; Wang, C.; et al. Effects of a YSZ porous layer between electrolyte and oxygen electrode in solid oxide electrolysis
cells on the electrochemical performance and stability. Int. J. Hydrogen. Energy. 2019, 44, 14493-9. DOI
67. Song, Y.; Zhang, X.; Zhou, Y.; et al. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified
LSM-YSZ anode. J. Energy. Chem. 2019, 35, 181-7. DOI
68. Mahata, A.; Datta, P.; Basu, R. N. Synthesis and characterization of Ca doped LaMnO as potential anode material for solid oxide
3
electrolysis cells. Ceram. Int. 2017, 43, 433-8. DOI