Page 51 - Read Online
P. 51

Boaretto et al. Energy Mater. 2025, 5, 500040  https://dx.doi.org/10.20517/energymater.2024.203  Page 23 of 24

                   ACS. Energy. Lett. 2024, 9, 3369-79.  DOI
               29.      Li, X.; Li, Z.; Zhang, W.; et al. Flame-retardant in-situ formed gel polymer electrolyte with different valance states of phosphorus
                   structures for high-performance and fire-safety lithium-ion batteries. Chem. Eng. J. 2024, 490, 151568.  DOI
               30.      Pan, J.; Zhang, Y.; Wang, J.; et al. A quasi-double-layer solid electrolyte with adjustable interphases enabling high-voltage solid-state
                   batteries. Adv. Mater. 2022, 34, e2107183.  DOI
               31.      Shi, J.; Nguyen, H.; Chen, Z.; et al. Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast
                   charging lithium-metal batteries. Energy. Mater. 2023, 3, 300036.  DOI
               32.      Cho, Y.; Le, M. A.; Hoang, H. A.; Kim, D. Flexible and hyper ion-conductive LATP-embedded semi-interpenetrating polymer
                   network electrolyte membrane for solid-state lithium battery. J. Energy. Storage. 2024, 92, 112295.  DOI
               33.      Steinle, D.; Chen, Z.; Nguyen, H.; et al. Single-ion conducting polymer electrolyte for Li||LiNi Mn Co O  batteries - impact of the
                                                                                0.6
                                                                                    0.2
                                                                                       0.2
                                                                                          2
                   anodic cutoff voltage and ambient temperature. J. Solid. State. Electrochem. 2022, 26, 97-102.  DOI
               34.      Dong, X.; Mayer, A.; Liu, X.; Passerini, S.; Bresser, D. Single-ion conducting multi-block copolymer electrolyte for lithium-metal
                   batteries with high mass loading NCM  cathodes. ACS. Energy. Lett. 2023, 8, 1114-21.  DOI
                                            811
               35.      Dong, X.; Chen, Z.; Gao, X.; et al. Stepwise optimization of single-ion conducting polymer electrolytes for high-performance lithium-
                   metal batteries. J. Energy. Chem. 2023, 80, 174-81.  DOI
               36.      Sun, Q.; Wang, S.; Ma, Y.; et al. Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent. Adv.
                   Mater. 2023, 35, e2300998.  DOI
               37.      Mao, M.; Huang, B.; Li, Q.; Wang, C.; He, Y.; Kang, F. In-situ construction of hierarchical cathode electrolyte interphase for high
                   performance LiNi Co Mn O /Li metal battery. Nano. Energy. 2020, 78, 105282.  DOI
                                        2
                                     0.1
                                  0.1
                               0.8
               38.      Orue, A.; Arrese-igor, M.; Gonzalez, U.; Gómez, N.; Cid, R.; López-aranguren, P. Enhancing high-voltage solid-state lithium-metal
                   battery performance through a stable solid-electrolyte interphase. J. Mater. Chem. A. 2024, 12, 22775-84.  DOI
               39.      Zhao, Q.; Chen, P.; Li, S.; Liu, X.; Archer, L. A. Solid-state polymer electrolytes stabilized by task-specific salt additives. J. Mater.
                   Chem. A. 2019, 7, 7823-30.  DOI
               40.      Wang, Z.; Yang, K.; Song, Y.; et al. Polymer matrix mediated solvation of LiNO  in carbonate electrolytes for quasi-solid high-voltage
                                                                       3
                   lithium metal batteries. Nano. Res. 2020, 13, 2431-7.  DOI
               41.      Marangon, V.; Tominaga, Y.; Hassoun, J. An alternative composite polymer electrolyte for high performances lithium battery. J.
                   Power. Sources. 2020, 449, 227508.  DOI
               42.      Zhang, X.; Jia, M.; Zhang, Q.; et al. LiNO  and TMP enabled high voltage room-temperature solid-state lithium metal battery. Chem.
                                               3
                   Eng. J. 2022, 448, 137743.  DOI
               43.      Wen, S.; Luo, C.; Wang, Q.; et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-
                   solid-state lithium batteries. Energy. Storage. Mater. 2022, 47, 453-61.  DOI
               44.      Zhang, Z.; Cheng, Z.; Qiu, F.; et al. High concentration in situ polymer gel electrolyte for high performance lithium metal batteries.
                   Chem. Commun. 2024, 60, 6276-9.  DOI
               45.      Wang, Q.; Ma, Y.; Wang, Y.; et al. In situ catalytic polymerization of LiNO -containing PDOL electrolytes for high-energy quasi-
                                                                      3
                   solid-state lithium metal batteries. Chem. Eng. J. 2024, 484, 149757.  DOI
               46.      Jing, C.; Dai, K.; Liu, D.; et al. Crosslinked solubilizer enables nitrate-enriched carbonate polymer electrolytes for stable, high-voltage
                   lithium metal batteries. Sci. Bull. 2024, 69, 209-17.  DOI
               47.      Cui, Z.; Hassoun, J.; Tominaga, Y. Development of polycarbonate-based electrolytes with in situ polymerized electrolyte interlayers
                   for lithium-metal batteries. J. Energy. Storage. 2024, 79, 110175.  DOI
               48.      Li, P.; Zhang, H.; Lu, J.; Li, G. Low concentration sulfolane-based electrolyte for high voltage lithium metal batteries. Angew. Chem.
                   Int. Ed. 2023, 62, e202216312.  DOI
               49.      Zhao, C.; Lu, Y.; Yan, K.; et al. Tailoring the chemical/electrochemical response in a quasi-solid polymer electrolyte enables the
                   simultaneous in situ construction of superior cathodic and anodic interfaces. Adv. Energy. Mater. 2024, 14, 2304532.  DOI
               50.      Wang, Y.; Li, T.; Yang, X.; et al. 2D solid-electrolyte interphase built by high-concentration polymer electrolyte for highly reversible
                   silicon anodes. Adv. Energy. Mater. 2024, 14, 2303189.  DOI
               51.      Ren, W.; Luo, C.; Huang, Y.; et al. Hydroxypropylmethylcellulose: functional material carrier for in-situ solid electrolyte engineering
                   of advanced lithium metal batteries. Energy. Storage. Mater. 2023, 59, 102777.  DOI
               52.      Li, B.; Chao, Y.; Li, M.; et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem.
                   Energy. Rev. 2023, 6, 147.  DOI
               53.      Wang, X.; Xu, L.; Li, M.; et al. LiNO  regulated rigid-flexible-synergistic polymer electrolyte boosting high-performance Li metal
                                            3
                   batteries. Energy. Storage. Mater. 2024, 73, 103778.  DOI
               54.      Cui, Z.; Marangon, V.; Hassoun, J.; Tominaga, Y. Polycarbonate-based composite polymer electrolytes with Al O  enhanced by in situ
                                                                                             3
                                                                                           2
                   polymerized electrolyte interlayers for all-solid-state lithium-metal batteries. J. Power. Sources. 2024, 611, 234760.  DOI
                                       +
               55.      Watanabe, M. Estimation of Li  transport number in polymer electrolytes by the combination of complex impedance and potentiostatic
                   polarization measurements. Solid. State. Ion. 1988, 28-30, 911-7.  DOI
               56.      Adams, B. D.; Zheng, J.; Ren, X.; Xu, W.; Zhang, J. Accurate determination of coulombic efficiency for lithium metal anodes and
                   lithium metal batteries. Adv. Energy. Mater. 2018, 8, 1702097.  DOI
               57.      Seah, M. P. Simple universal curve for the energy-dependent electron attenuation length for all materials. Surf. Interface. Anal. 2012,
                   44, 1353-9.  DOI
   46   47   48   49   50   51   52   53   54   55   56