Page 51 - Read Online
P. 51
Boaretto et al. Energy Mater. 2025, 5, 500040 https://dx.doi.org/10.20517/energymater.2024.203 Page 23 of 24
ACS. Energy. Lett. 2024, 9, 3369-79. DOI
29. Li, X.; Li, Z.; Zhang, W.; et al. Flame-retardant in-situ formed gel polymer electrolyte with different valance states of phosphorus
structures for high-performance and fire-safety lithium-ion batteries. Chem. Eng. J. 2024, 490, 151568. DOI
30. Pan, J.; Zhang, Y.; Wang, J.; et al. A quasi-double-layer solid electrolyte with adjustable interphases enabling high-voltage solid-state
batteries. Adv. Mater. 2022, 34, e2107183. DOI
31. Shi, J.; Nguyen, H.; Chen, Z.; et al. Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast
charging lithium-metal batteries. Energy. Mater. 2023, 3, 300036. DOI
32. Cho, Y.; Le, M. A.; Hoang, H. A.; Kim, D. Flexible and hyper ion-conductive LATP-embedded semi-interpenetrating polymer
network electrolyte membrane for solid-state lithium battery. J. Energy. Storage. 2024, 92, 112295. DOI
33. Steinle, D.; Chen, Z.; Nguyen, H.; et al. Single-ion conducting polymer electrolyte for Li||LiNi Mn Co O batteries - impact of the
0.6
0.2
0.2
2
anodic cutoff voltage and ambient temperature. J. Solid. State. Electrochem. 2022, 26, 97-102. DOI
34. Dong, X.; Mayer, A.; Liu, X.; Passerini, S.; Bresser, D. Single-ion conducting multi-block copolymer electrolyte for lithium-metal
batteries with high mass loading NCM cathodes. ACS. Energy. Lett. 2023, 8, 1114-21. DOI
811
35. Dong, X.; Chen, Z.; Gao, X.; et al. Stepwise optimization of single-ion conducting polymer electrolytes for high-performance lithium-
metal batteries. J. Energy. Chem. 2023, 80, 174-81. DOI
36. Sun, Q.; Wang, S.; Ma, Y.; et al. Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent. Adv.
Mater. 2023, 35, e2300998. DOI
37. Mao, M.; Huang, B.; Li, Q.; Wang, C.; He, Y.; Kang, F. In-situ construction of hierarchical cathode electrolyte interphase for high
performance LiNi Co Mn O /Li metal battery. Nano. Energy. 2020, 78, 105282. DOI
2
0.1
0.1
0.8
38. Orue, A.; Arrese-igor, M.; Gonzalez, U.; Gómez, N.; Cid, R.; López-aranguren, P. Enhancing high-voltage solid-state lithium-metal
battery performance through a stable solid-electrolyte interphase. J. Mater. Chem. A. 2024, 12, 22775-84. DOI
39. Zhao, Q.; Chen, P.; Li, S.; Liu, X.; Archer, L. A. Solid-state polymer electrolytes stabilized by task-specific salt additives. J. Mater.
Chem. A. 2019, 7, 7823-30. DOI
40. Wang, Z.; Yang, K.; Song, Y.; et al. Polymer matrix mediated solvation of LiNO in carbonate electrolytes for quasi-solid high-voltage
3
lithium metal batteries. Nano. Res. 2020, 13, 2431-7. DOI
41. Marangon, V.; Tominaga, Y.; Hassoun, J. An alternative composite polymer electrolyte for high performances lithium battery. J.
Power. Sources. 2020, 449, 227508. DOI
42. Zhang, X.; Jia, M.; Zhang, Q.; et al. LiNO and TMP enabled high voltage room-temperature solid-state lithium metal battery. Chem.
3
Eng. J. 2022, 448, 137743. DOI
43. Wen, S.; Luo, C.; Wang, Q.; et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-
solid-state lithium batteries. Energy. Storage. Mater. 2022, 47, 453-61. DOI
44. Zhang, Z.; Cheng, Z.; Qiu, F.; et al. High concentration in situ polymer gel electrolyte for high performance lithium metal batteries.
Chem. Commun. 2024, 60, 6276-9. DOI
45. Wang, Q.; Ma, Y.; Wang, Y.; et al. In situ catalytic polymerization of LiNO -containing PDOL electrolytes for high-energy quasi-
3
solid-state lithium metal batteries. Chem. Eng. J. 2024, 484, 149757. DOI
46. Jing, C.; Dai, K.; Liu, D.; et al. Crosslinked solubilizer enables nitrate-enriched carbonate polymer electrolytes for stable, high-voltage
lithium metal batteries. Sci. Bull. 2024, 69, 209-17. DOI
47. Cui, Z.; Hassoun, J.; Tominaga, Y. Development of polycarbonate-based electrolytes with in situ polymerized electrolyte interlayers
for lithium-metal batteries. J. Energy. Storage. 2024, 79, 110175. DOI
48. Li, P.; Zhang, H.; Lu, J.; Li, G. Low concentration sulfolane-based electrolyte for high voltage lithium metal batteries. Angew. Chem.
Int. Ed. 2023, 62, e202216312. DOI
49. Zhao, C.; Lu, Y.; Yan, K.; et al. Tailoring the chemical/electrochemical response in a quasi-solid polymer electrolyte enables the
simultaneous in situ construction of superior cathodic and anodic interfaces. Adv. Energy. Mater. 2024, 14, 2304532. DOI
50. Wang, Y.; Li, T.; Yang, X.; et al. 2D solid-electrolyte interphase built by high-concentration polymer electrolyte for highly reversible
silicon anodes. Adv. Energy. Mater. 2024, 14, 2303189. DOI
51. Ren, W.; Luo, C.; Huang, Y.; et al. Hydroxypropylmethylcellulose: functional material carrier for in-situ solid electrolyte engineering
of advanced lithium metal batteries. Energy. Storage. Mater. 2023, 59, 102777. DOI
52. Li, B.; Chao, Y.; Li, M.; et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem.
Energy. Rev. 2023, 6, 147. DOI
53. Wang, X.; Xu, L.; Li, M.; et al. LiNO regulated rigid-flexible-synergistic polymer electrolyte boosting high-performance Li metal
3
batteries. Energy. Storage. Mater. 2024, 73, 103778. DOI
54. Cui, Z.; Marangon, V.; Hassoun, J.; Tominaga, Y. Polycarbonate-based composite polymer electrolytes with Al O enhanced by in situ
3
2
polymerized electrolyte interlayers for all-solid-state lithium-metal batteries. J. Power. Sources. 2024, 611, 234760. DOI
+
55. Watanabe, M. Estimation of Li transport number in polymer electrolytes by the combination of complex impedance and potentiostatic
polarization measurements. Solid. State. Ion. 1988, 28-30, 911-7. DOI
56. Adams, B. D.; Zheng, J.; Ren, X.; Xu, W.; Zhang, J. Accurate determination of coulombic efficiency for lithium metal anodes and
lithium metal batteries. Adv. Energy. Mater. 2018, 8, 1702097. DOI
57. Seah, M. P. Simple universal curve for the energy-dependent electron attenuation length for all materials. Surf. Interface. Anal. 2012,
44, 1353-9. DOI