Page 50 - Read Online
P. 50
Page 22 of 24 Boaretto et al. Energy Mater. 2025, 5, 500040 https://dx.doi.org/10.20517/energymater.2024.203
REFERENCES
1. Choudhury, S.; Tu, Z.; Nijamudheen, A.; et al. Stabilizing polymer electrolytes in high-voltage lithium batteries. Nat. Commun. 2019,
10, 3091. DOI PubMed PMC
2. Cui, S.; Wu, X.; Yang, Y.; et al. Heterostructured gel polymer electrolyte enabling long-cycle quasi-solid-state lithium metal batteries.
ACS. Energy. Lett. 2022, 7, 42-52. DOI
3. Wu, F.; Chen, Z.; Fang, S.; Zuo, W.; Kim, G.; Passerini, S. The role of ionic liquids in resolving the interfacial chemistry for (quasi-)
solid-state batteries. Energy. Storage. Mater. 2023, 63, 103062. DOI
4. Li, W.; Li, H.; Liu, J.; et al. Systematic safety evaluation of quasi-solid-state lithium batteries: a case study. Energy. Environ. Sci.
2023, 16, 5444-53. DOI
5. Wang, Z.; Wang, Y.; Shen, L.; et al. Towards durable practical lithium-metal batteries: advancing the feasibility of poly-DOL-based
quasi-solid-state electrolytes via a novel nitrate-based additive. Energy. Environ. Sci. 2023, 16, 4084-92. DOI
6. Pan, J.; Zhao, P.; Yao, H.; Hu, L.; Fan, H. J. Inert filler selection strategies in Li-ion gel polymer electrolytes. ACS. Appl. Mater.
Interfaces. 2024, 16, 48706-12. DOI
+
7. Yao, M.; Ruan, Q.; Yu, T.; Zhang, H.; Zhang, S. Solid polymer electrolyte with in-situ generated fast Li conducting network enable
high voltage and dendrite-free lithium metal battery. Energy. Storage. Mater. 2022, 44, 93-103. DOI
8. Zhang, T.; Li, J.; Li, X.; et al. A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics
for high-performance lithium metal batteries. Adv. Mater. 2022, 34, e2205575. DOI
9. Li, L.; Wang, J.; Zhang, L.; Duan, H.; Deng, Y.; Chen, G. Rational design of a heterogeneous double-layered composite solid
electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5 V all-solid-state lithium
batteries with superior performance. Energy. Storage. Mater. 2022, 45, 1062-73. DOI
10. Qiu, G.; Shi, Y.; Huang, B. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries.
Nano. Res. 2022, 15, 5153-60. DOI
11. Wang, Q.; Su, Y.; Zhu, W.; et al. Achieving stable interface for lithium metal batteries using fluoroethylene carbonate-modified
garnet-type Li La Zr Ta O composite electrolyte. Electrochim. Acta. 2023, 446, 142063. DOI
6.4 3 1.4 0.6 12
12. Shen, C.; Feng, W.; Yu, Y.; et al. In situ polymerization inhibiting electron localization in hybrid electrolyte for room-temperature
solid-state lithium metal batteries. Adv. Energy. Mater. 2024, 14, 2304511. DOI
13. Boaretto, N.; Meabe, L.; Lindberg, S.; et al. Hybrid ceramic polymer electrolytes enabling long cycling in practical 1 Ah-class high-
voltage solid-state batteries with Li metal anode. Adv. Funct. Mater. 2024, 34, 2404564. DOI
14. Boaretto, N.; Meabe, L.; Martinez-ibañez, M.; Armand, M.; Zhang, H. Review-polymer electrolytes for rechargeable batteries: from
nanocomposite to nanohybrid. J. Electrochem. Soc. 2020, 167, 070524. DOI
15. Marchiori, C. F. N.; Carvalho, R. P.; Ebadi, M.; Brandell, D.; Araujo, C. M. Understanding the electrochemical stability window of
polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts. Chem. Mater. 2020, 32, 7237-46.
DOI
16. Chen, L.; Venkatram, S.; Kim, C.; Batra, R.; Chandrasekaran, A.; Ramprasad, R. Electrochemical stability window of polymeric
electrolytes. Chem. Mater. 2019, 31, 4598-604. DOI
17. Bao, D.; Tao, Y.; Zhong, Y.; et al. High-performance dual-salt plastic crystal electrolyte enabled by succinonitrile-regulated porous
polymer host. Adv. Funct. Mater. 2023, 33, 2213211. DOI
18. Barbosa, J. C.; Pinto, R. S.; Correia, D. M.; et al. Effect of fluorinated polymer matrix type in the performance of solid polymer
electrolytes based on ionic liquids for solid-state lithium-ion batteries. Chem. Eng. J. 2023, 478, 147388. DOI
19. Agnihotri, T.; Ahmed, S. A.; Tamilarasan, E. B.; et al. Anion-trapping composite gel electrolyte for safer and more stable anode-free
lithium-metal batteries. Chem. Eng. J. 2024, 484, 149608. DOI
20. Deshmukh, S. P.; Das, R.; Kundu, D. Unraveling the underlying structural & transport mechanism of lithium-ion within Lithium
bis(trifluoromethanesulfonyl)imide subjected to organic & inorganic matrix based Eutectogel. J. Power. Sources. 2024, 600, 234270.
DOI
21. Duan, H.; You, Y.; Wang, G.; et al. Lithium-ion charged polymer channels flattening lithium metal anode. Nanomicro. Lett. 2024, 16,
78. DOI
22. Gai, Q.; Zhao, T.; Ma, J.; Wang, C.; Gao, H.; Li, L. An in-situ bicomponent polymeric matrix solid electrolyte for solid-state Lithium
metal batteries with extended cycling-life. J. Energy. Storage. 2024, 80, 110150. DOI
23. Lin, Y.; Wu, L.; Zhan, Y.; et al. Self-assembly formation of solid-electrolyte interphase in gel polymer electrolytes for high
performance lithium metal batteries. Energy. Storage. Mater. 2023, 61, 102868. DOI
24. Lv, Q.; Jing, Y.; Wang, B.; et al. Multilayer asymmetric solid polymer electrolyte with modified interface for high-voltage solid-state
Li metal batteries. Energy. Storage. Mater. 2024, 65, 103122. DOI
25. Li, Z.; Zhang, S.; Jiang, Z.; Cai, D.; Gu, C.; Tu, J. Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for
safe lithium metal battery. Mater. Chem. Phys. 2021, 267, 124701. DOI
26. Zhang, J.; Sun, B.; Huang, X.; Chen, S.; Wang, G. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries
with enhanced safety. Sci. Rep. 2014, 4, 6007. DOI PubMed PMC
27. Bai, M.; Tang, X.; Zhang, M.; et al. An in-situ polymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries. Nat.
Commun. 2024, 15, 5375. DOI
28. Jiang, X.; Liu, F.; Bai, M.; et al. Breaking solvation dominance of phosphate via dipole-dipole chemistry in gel polymer electrolyte.