Page 52 - Read Online
P. 52

Page 24 of 24        Boaretto et al. Energy Mater. 2025, 5, 500040  https://dx.doi.org/10.20517/energymater.2024.203

               58.      Fairley, N.; Fernandez, V.; Richard-plouet, M.; et al. Systematic and collaborative approach to problem solving using X-ray
                   photoelectron spectroscopy. App. Surf. Sci. Adv. 2021, 5, 100112.  DOI
               59.      Jagger, B.; Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 2023, 7, 2228-44.  DOI
               60.      Orue, A.; Arrese-Igor, M.; Cid, R.; et al. High resolution XPS of organic polymers: the scienta ESCA300 database (Beamson, G.;
                   Briggs, D.). J. Chem. Educ. 1993, 70, A25.  DOI
               61.      Orue, A.; Arrese-igor, M.; Cid, R.; et al. Enhancing the polymer electrolyte-Li metal interface on high-voltage solid-state batteries with
                   Li-based additives inspired by the surface chemistry of Li La Zr O . J. Mater. Chem. A. 2022, 10, 2352-61.  DOI
                                                        7  3  2  12
               62.      Xue, W.; Shi, Z.; Huang, M.; et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries.
                   Energy. Environ. Sci. 2020, 13, 212-20.  DOI
               63.      Wurster, V.; Engel, C.; Graebe, H.; Ferber, T.; Jaegermann, W.; Hausbrand, R. Characterization of the interfaces in LiFePO /PEO-
                                                                                                     4
                   LiTFSI composite cathodes and to the adjacent layers. J. Electrochem. Soc. 2019, 166, A5410-20.  DOI
               64.      Liu, Y.; Yang, T.; Fang, R.; et al. Ultra-homogeneous dense Ag nano layer enables long lifespan solid-state lithium metal batteries. J.
                   Energy. Chem. 2024, 96, 110-9.  DOI
               65.      Seki, S.; Kobayashi, Y.; Miyashiro, H.; Mita, Y.; Iwahori, T. Fabrication of high-voltage, high-capacity all-solid-state lithium polymer
                   secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept. Chem. Mater. 2005, 17, 2041-5.
                   DOI
               66.      Sabet P, Sauer DU. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-
                   manganese-cobalt cathodes. J. Power. Sources. 2019, 425, 121-9.  DOI
                                                             +
               67.      Charbonneau, V.; Lasia, A.; Brisard, G. Impedance studies of Li  diffusion in nickel manganese cobalt oxide (NMC) during charge/
                   discharge cycles. J. Electroanal. Chem. 2020, 875, 113944.  DOI
               68.      Pritzl, D.; Bumberger, A. E.; Wetjen, M.; Landesfeind, J.; Solchenbach, S.; Gasteiger, H. A. Identifying contact resistances in high-
                   voltage cathodes by impedance spectroscopy. J. Electrochem. Soc. 2019, 166, A582-90.  DOI
               69.      Brug, G.; van, E. A.; Sluyters-Rehbach, M.; Sluyters, J. The analysis of electrode impedances complicated by the presence of a
                   constant phase element. J. Electroanal. Chem. Interfacial. Electrochem. 1984, 176, 275-95.  DOI
               70.      Cabañero, M. M. A.; Boaretto, N.; Naylor, A. J.; et al. Are polymer-based electrolytes ready for high-voltage lithium battery
                   applications? An overview of degradation mechanisms and battery performance. Adv. Energy. Mater. 2022, 12, 2201264.  DOI
               71.      Boaretto, N.; Garbayo, I.; Valiyaveettil-Sobhanraj, S.; et al. Lithium solid-state batteries: state-of-the-art and challenges for materials,
                   interfaces and processing. J. Power. Sources. 2021, 502, 229919.  DOI
               72.      Chiou, M.; Borzutzki, K.; Thienenkamp, J. H.; et al. Durable fast-charging lithium metal batteries designed with cross-linked polymer
                   electrolytes and niobate-coated cathode. J. Power. Sources. 2022, 538, 231528.  DOI
               73.      Chen, Y.; Lennartz, P.; Liu, K. L.; et al. Towards all-solid-state polymer batteries: going beyond PEO with hybrid concepts. Adv.
                   Funct. Mater. 2023, 33, 2300501.  DOI
               74.      Zhai, P.; Qu, S.; Ahmad, N.; Hua, Z.; Shao, R.; Yang, W. Constructing nano-interlayer inhibiting interfacial degradation toward high-
                   voltage PEO-based all-solid-state lithium batteries. Small 2024, 20, e2310547.  DOI  PubMed
               75.      Zhang, W.; Lu, Y.; Wan, L.; et al. Engineering a passivating electric double layer for high performance lithium metal batteries. Nat.
                   Commun. 2022, 13, 2029.  DOI  PubMed  PMC
               76.      Jin, C.; Huang, Y.; Li, L.; et al. A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries. Nat.
                   Commun. 2023, 14, 8269.  DOI  PubMed  PMC
               77.      Ma, M.; Guo, X.; Wen, P.; et al. Reactive solid polymer layer: from a single fluoropolymer to divergent fluorinated interface. Angew.
                   Chem. Int. Ed. 2024, 63, e202407304.  DOI
   47   48   49   50   51   52   53   54   55   56   57