Page 95 - Read Online
P. 95

Page 28 of 32             Yan et al. Energy Mater 2023;3:300002  https://dx.doi.org/10.20517/energymater.2022.60

               57.       Wang P, Qu W, Song W, Chen H, Chen R, Fang D. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal
                    batteries. Adv Funct Mater 2019;29:1900950.  DOI
               58.       Huang JY, Zhong L, Wang CM, et al. In situ observation of the electrochemical lithiation of a single SnO  nanowire electrode.
                                                                                            2
                    Science 2010;330:1515-20.  DOI  PubMed
               59.       Kushima A, So KP, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution:
                    Root growth, dead lithium and lithium flotsams. Nano Energy 2017;32:271-9.  DOI
               60.       Mehdi BL, Qian J, Nasybulin E, et al. Observation and quantification of nanoscale processes in lithium batteries by operando
                    electrochemical (S)TEM. Nano Lett 2015;15:2168-73.  DOI  PubMed
               61.       Gong C, Pu SD, Gao X, et al. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron
                    microscopy. Adv Energy Mater 2021;11:2003118.  DOI
               62.       Li Y, Li Y, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science
                    2017;358:506-10.  DOI  PubMed
               63.       Wang X, Pawar G, Li Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat Mater 2020;19:1339-45.
                    DOI  PubMed
               64.       Aurbach D, Cohen Y. Morphological studies of Li deposition processes in LiAsF6/PC solutions by in situ atomic force microscopy. J
                    Electrochem Soc 1997;144:3355-60.  DOI
               65.       Kitta M, Sano H. Real-time observation of Li deposition on a Li electrode with operand atomic force microscopy and surface
                    mechanical imaging. Langmuir 2017;33:1861-6.  DOI  PubMed
               66.       Yoon I, Jurng S, Abraham DP, Lucht BL, Guduru PR. In situ measurement of the plane-strain modulus of the solid electrolyte
                    interphase on lithium-metal anodes in ionic liquid electrolytes. Nano Lett 2018;18:5752-9.  DOI  PubMed
               67.       Krueger B, Balboa L, Dohmann JF, Winter M, Bieker P, Wittstock G. Solid electrolyte interphase evolution on lithium metal
                    electrodes followed by scanning slectrochemical microscopy under realistic battery cycling current densities. ChemElectroChem
                    2020;7:3590-6.  DOI
               68.       Nishikawa K, Mori T, Nishida T, Fukunaka Y, Rosso M, Homma T. In situ observation of dendrite growth of electrodeposited Li
                    metal. J Electrochem Soc 2010;157:A1212.  DOI
               69.       Cheng J, Assegie AA, Huang C, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy. J
                    Phys Chem C 2017;121:7761-6.  DOI
               70.       Ebner M, Marone F, Stampanoni M, Wood V. Visualization and quantification of electrochemical and mechanical degradation in Li
                    ion batteries. Science 2013;342:716-20.  DOI
               71.       Harry KJ, Hallinan DT, Parkinson DY, MacDowell AA, Balsara NP. Detection of subsurface structures underneath dendrites formed
                    on cycled lithium metal electrodes. Nat Mater 2014;13:69-73.  DOI  PubMed
               72.       Lewis JA, Cortes FJQ, Liu Y, et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando
                    X-ray tomography. Nat Mater 2021;20:503-10.  DOI  PubMed
               73.       Jung H, Lee B, Lengyel M, et al. Nanoscale in situ detection of nucleation and growth of Li electrodeposition at various current
                    densities. J Mater Chem A 2018;6:4629-35.  DOI
               74.       Ilott AJ, Mohammadi M, Chang HJ, Grey CP, Jerschow A. Real-time 3D imaging of microstructure growth in battery cells using
                    indirect MRI. Proc Natl Acad Sci USA 2016;113:10779-84.  DOI  PubMed  PMC
               75.       Sathiya M, Leriche JB, Salager E, Gourier D, Tarascon JM, Vezin H. Electron paramagnetic resonance imaging for real-time
                    monitoring of Li-ion batteries. Nat Commun 2015;6:6276.  DOI  PubMed  PMC
               76.       Wandt J, Marino C, Gasteiger HA, Jakes P, Eichel R, Granwehr J. Operando electron paramagnetic resonance spectroscopy -
                    formation of mossy lithium on lithium anodes during charge-discharge cycling. Energy Environ Sci 2015;8:1358-67.  DOI
               77.       Song B, Dhiman I, Carothers JC, et al. Dynamic lithium distribution upon dendrite growth and shorting revealed by operando neutron
                    imaging. ACS Energy Lett 2019;4:2402-8.  DOI
               78.       Sun F, Zhou D, He X, et al. Morphological reversibility of modified Li-based anodes for next-generation batteries. ACS Energy Lett
                    2019;4:306-16.  DOI
               79.       Xia M, Liu T, Peng N, et al. Lab-scale in situ X-Ray diffraction technique for different battery systems: designs, applications, and
                    perspectives. Small Methods 2019;3:1900119.  DOI
               80.       Shen X, Li Y, Qian T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat Commun
                    2019;10:900.  DOI  PubMed  PMC
                                                   +
               81.       Ghanty C, Markovsky B, Erickson EM, et al. Li -ion extraction/insertion of Ni-rich Li (Ni Co Mn ) O  (0.005 < x < 0.03; y:z = 8:1,
                                                                               y
                                                                           1+x
                                                                                 z
                                                                                    z w
                                                                                       2
                    w ≈ 1) electrodes: in situ XRD and raman spectroscopy study. ChemElectroChem 2015;2:1479-86.  DOI
               82.       Qiu F, Zhang X, Qiao Y, et al. An ultra-stable and enhanced reversibility lithium metal anode with a sufficient O  design for Li-O
                                                                                              2          2
                    battery. Energy Storage Mater 2018;12:176-82.  DOI
               83.       Chen W, Hu Y, Lv W, et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat
                    Commun 2019;10:4973.  DOI  PubMed  PMC
               84.       Cheng Q, Wei L, Liu Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated
                    Raman scattering microscopy. Nat Commun 2018;9:2942.  DOI  PubMed  PMC
               85.       Hu Z, Xian F, Guo Z, et al. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem Mater
                    2020;32:3405-13.  DOI
   90   91   92   93   94   95   96   97   98   99   100