Page 95 - Read Online
P. 95
Page 28 of 32 Yan et al. Energy Mater 2023;3:300002 https://dx.doi.org/10.20517/energymater.2022.60
57. Wang P, Qu W, Song W, Chen H, Chen R, Fang D. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal
batteries. Adv Funct Mater 2019;29:1900950. DOI
58. Huang JY, Zhong L, Wang CM, et al. In situ observation of the electrochemical lithiation of a single SnO nanowire electrode.
2
Science 2010;330:1515-20. DOI PubMed
59. Kushima A, So KP, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution:
Root growth, dead lithium and lithium flotsams. Nano Energy 2017;32:271-9. DOI
60. Mehdi BL, Qian J, Nasybulin E, et al. Observation and quantification of nanoscale processes in lithium batteries by operando
electrochemical (S)TEM. Nano Lett 2015;15:2168-73. DOI PubMed
61. Gong C, Pu SD, Gao X, et al. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron
microscopy. Adv Energy Mater 2021;11:2003118. DOI
62. Li Y, Li Y, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science
2017;358:506-10. DOI PubMed
63. Wang X, Pawar G, Li Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat Mater 2020;19:1339-45.
DOI PubMed
64. Aurbach D, Cohen Y. Morphological studies of Li deposition processes in LiAsF6/PC solutions by in situ atomic force microscopy. J
Electrochem Soc 1997;144:3355-60. DOI
65. Kitta M, Sano H. Real-time observation of Li deposition on a Li electrode with operand atomic force microscopy and surface
mechanical imaging. Langmuir 2017;33:1861-6. DOI PubMed
66. Yoon I, Jurng S, Abraham DP, Lucht BL, Guduru PR. In situ measurement of the plane-strain modulus of the solid electrolyte
interphase on lithium-metal anodes in ionic liquid electrolytes. Nano Lett 2018;18:5752-9. DOI PubMed
67. Krueger B, Balboa L, Dohmann JF, Winter M, Bieker P, Wittstock G. Solid electrolyte interphase evolution on lithium metal
electrodes followed by scanning slectrochemical microscopy under realistic battery cycling current densities. ChemElectroChem
2020;7:3590-6. DOI
68. Nishikawa K, Mori T, Nishida T, Fukunaka Y, Rosso M, Homma T. In situ observation of dendrite growth of electrodeposited Li
metal. J Electrochem Soc 2010;157:A1212. DOI
69. Cheng J, Assegie AA, Huang C, et al. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy. J
Phys Chem C 2017;121:7761-6. DOI
70. Ebner M, Marone F, Stampanoni M, Wood V. Visualization and quantification of electrochemical and mechanical degradation in Li
ion batteries. Science 2013;342:716-20. DOI
71. Harry KJ, Hallinan DT, Parkinson DY, MacDowell AA, Balsara NP. Detection of subsurface structures underneath dendrites formed
on cycled lithium metal electrodes. Nat Mater 2014;13:69-73. DOI PubMed
72. Lewis JA, Cortes FJQ, Liu Y, et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando
X-ray tomography. Nat Mater 2021;20:503-10. DOI PubMed
73. Jung H, Lee B, Lengyel M, et al. Nanoscale in situ detection of nucleation and growth of Li electrodeposition at various current
densities. J Mater Chem A 2018;6:4629-35. DOI
74. Ilott AJ, Mohammadi M, Chang HJ, Grey CP, Jerschow A. Real-time 3D imaging of microstructure growth in battery cells using
indirect MRI. Proc Natl Acad Sci USA 2016;113:10779-84. DOI PubMed PMC
75. Sathiya M, Leriche JB, Salager E, Gourier D, Tarascon JM, Vezin H. Electron paramagnetic resonance imaging for real-time
monitoring of Li-ion batteries. Nat Commun 2015;6:6276. DOI PubMed PMC
76. Wandt J, Marino C, Gasteiger HA, Jakes P, Eichel R, Granwehr J. Operando electron paramagnetic resonance spectroscopy -
formation of mossy lithium on lithium anodes during charge-discharge cycling. Energy Environ Sci 2015;8:1358-67. DOI
77. Song B, Dhiman I, Carothers JC, et al. Dynamic lithium distribution upon dendrite growth and shorting revealed by operando neutron
imaging. ACS Energy Lett 2019;4:2402-8. DOI
78. Sun F, Zhou D, He X, et al. Morphological reversibility of modified Li-based anodes for next-generation batteries. ACS Energy Lett
2019;4:306-16. DOI
79. Xia M, Liu T, Peng N, et al. Lab-scale in situ X-Ray diffraction technique for different battery systems: designs, applications, and
perspectives. Small Methods 2019;3:1900119. DOI
80. Shen X, Li Y, Qian T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat Commun
2019;10:900. DOI PubMed PMC
+
81. Ghanty C, Markovsky B, Erickson EM, et al. Li -ion extraction/insertion of Ni-rich Li (Ni Co Mn ) O (0.005 < x < 0.03; y:z = 8:1,
y
1+x
z
z w
2
w ≈ 1) electrodes: in situ XRD and raman spectroscopy study. ChemElectroChem 2015;2:1479-86. DOI
82. Qiu F, Zhang X, Qiao Y, et al. An ultra-stable and enhanced reversibility lithium metal anode with a sufficient O design for Li-O
2 2
battery. Energy Storage Mater 2018;12:176-82. DOI
83. Chen W, Hu Y, Lv W, et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat
Commun 2019;10:4973. DOI PubMed PMC
84. Cheng Q, Wei L, Liu Z, et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated
Raman scattering microscopy. Nat Commun 2018;9:2942. DOI PubMed PMC
85. Hu Z, Xian F, Guo Z, et al. Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries. Chem Mater
2020;32:3405-13. DOI