Page 93 - Read Online
P. 93

Page 26 of 32             Yan et al. Energy Mater 2023;3:300002  https://dx.doi.org/10.20517/energymater.2022.60

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               ©The Author(s) 2023.


               REFERENCES
               1.       Li J, Kong Z, Liu X, et al. Strategies to anode protection in lithium metal battery: a review. InfoMat 2021;3:1333-63.  DOI
               2.       Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35.  DOI
                    PubMed
               3.       Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.  DOI  PubMed
               4.       Shu C, Wang J, Long J, Liu HK, Dou SX. Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries:
                    existing problems and solutions. Adv Mater 2019;31:e1804587.  DOI  PubMed
               5.       Sun K, Peng Z. Intermetallic interphases in lithium metal and lithium ion batteries. InfoMat 2021;3:1083-109.  DOI
               6.       Han Y, Liu B, Xiao Z, et al. Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives.
                    InfoMat 2021;3:155-74.  DOI
               7.       Whittingham MS. Lithium batteries and cathode materials. Chem Rev 2004;104:4271-301.  DOI  PubMed
               8.       Cheng  X,  Zhang  R,  Zhao  C,  Zhang  Q.  Toward  safe  lithium  metal  anode  in  rechargeable  batteries:  a  review.  Chem  Rev
                    2017:117,10403-73.  DOI  PubMed
               9.       Hu Z, Wang C, Wang C, et al. Uncovering the critical impact of the solid electrolyte interphase structure on the interfacial stability.
                    InfoMat 2022;4:e12249.  DOI
               10.       Liu B, Zhang J, Xu W. Advancing lithium metal batteries. Joule 2018;2:833-45.  DOI
               11.       Yang K, Chen L, Ma J, He Y, Kang F. Progress and perspective of Li Al Ti (PO )  ceramic electrolyte in lithium batteries.
                                                                    1+x  x  2-x  4 3
                    InfoMat 2021;3:1195-217.  DOI
               12.       Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte
                    interphase model. J Electrochem Soc 1979;126:2047-51.  DOI
               13.       Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J
                    Electrochem Soc 1997;144:L208-10.  DOI
               14.       Aurbach D, Daroux ML, Faguy PW, Yeager E. Identification of surface films formed on lithium in propylene carbonate solutions. J
                    Electrochem Soc 1987;134:1611-20.  DOI
               15.       Aurbach D, Ein-ely Y, Zaban A. The surface chemistry of lithium electrodes in alkyl carbonate solutions. J Electrochem Soc
                    1994;141:L1-3.  DOI
               16.       Aurbach D, Ein-eli Y, Markovsky B, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for
                    rechargeable li batteries: II. Graphite electrodes. J Electrochem Soc 1995;142:2882-90.  DOI
               17.       Ein-eli Y. A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of li-ion cells.
                    Electrochem Solid-State Lett 1999;2:212.  DOI
               18.       Goodenough JB, Kim Y. The lithium-ion battery: state of the art and future perspectives. Chem Mater 2010;22:587-603.  DOI
               19.       Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004;104:4303-417.  DOI  PubMed
               20.       Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 1990;42:7355-67.  DOI
                    PubMed
               21.       Peng H, Huang J, Cheng X, Zhang Q. Lithium-sulfur batteries: review on high-loading and high-energy lithium-sulfur batteries. Adv
                    Energy Mater 2017;7:1700260.  DOI
               22.       Zhang L, Yang T, Du C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental
                    transmission electron microscope set-up. Nat Nanotechnol 2020;15:94-8.  DOI  PubMed
               23.       Rosso M, Chassaing E, Chazalviel J, Gobron T. Onset of current-driven concentration instabilities in thin cell electrodeposition with
                    small inter-electrode distance. Electrochim Acta 2002;47:1267-73.  DOI
               24.       Barton JL, Bockris, JOM. The electrolytic growth of dendrites from ionic solutions. Proc R Soc Lond A 1962;268:485-505.  DOI
               25.       Yan Y, Shu C, Zheng R, et al. Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via
                    lithiophilic oxygen vacancy in Vo-TiO /Ti C Tx composite anodes. J Energy Chem 2022;65:654-65.  DOI
                                             2  3  2
               26.       Diggle JW, Despic AR, Bockris JO. The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 1969;116:1503.
   88   89   90   91   92   93   94   95   96   97   98