Page 93 - Read Online
P. 93
Page 26 of 32 Yan et al. Energy Mater 2023;3:300002 https://dx.doi.org/10.20517/energymater.2022.60
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
©The Author(s) 2023.
REFERENCES
1. Li J, Kong Z, Liu X, et al. Strategies to anode protection in lithium metal battery: a review. InfoMat 2021;3:1333-63. DOI
2. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science 2011;334:928-35. DOI
PubMed
3. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67. DOI PubMed
4. Shu C, Wang J, Long J, Liu HK, Dou SX. Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries:
existing problems and solutions. Adv Mater 2019;31:e1804587. DOI PubMed
5. Sun K, Peng Z. Intermetallic interphases in lithium metal and lithium ion batteries. InfoMat 2021;3:1083-109. DOI
6. Han Y, Liu B, Xiao Z, et al. Interface issues of lithium metal anode for high-energy batteries: challenges, strategies, and perspectives.
InfoMat 2021;3:155-74. DOI
7. Whittingham MS. Lithium batteries and cathode materials. Chem Rev 2004;104:4271-301. DOI PubMed
8. Cheng X, Zhang R, Zhao C, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev
2017:117,10403-73. DOI PubMed
9. Hu Z, Wang C, Wang C, et al. Uncovering the critical impact of the solid electrolyte interphase structure on the interfacial stability.
InfoMat 2022;4:e12249. DOI
10. Liu B, Zhang J, Xu W. Advancing lithium metal batteries. Joule 2018;2:833-45. DOI
11. Yang K, Chen L, Ma J, He Y, Kang F. Progress and perspective of Li Al Ti (PO ) ceramic electrolyte in lithium batteries.
1+x x 2-x 4 3
InfoMat 2021;3:1195-217. DOI
12. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte
interphase model. J Electrochem Soc 1979;126:2047-51. DOI
13. Peled E, Golodnitsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J
Electrochem Soc 1997;144:L208-10. DOI
14. Aurbach D, Daroux ML, Faguy PW, Yeager E. Identification of surface films formed on lithium in propylene carbonate solutions. J
Electrochem Soc 1987;134:1611-20. DOI
15. Aurbach D, Ein-ely Y, Zaban A. The surface chemistry of lithium electrodes in alkyl carbonate solutions. J Electrochem Soc
1994;141:L1-3. DOI
16. Aurbach D, Ein-eli Y, Markovsky B, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for
rechargeable li batteries: II. Graphite electrodes. J Electrochem Soc 1995;142:2882-90. DOI
17. Ein-eli Y. A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of li-ion cells.
Electrochem Solid-State Lett 1999;2:212. DOI
18. Goodenough JB, Kim Y. The lithium-ion battery: state of the art and future perspectives. Chem Mater 2010;22:587-603. DOI
19. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004;104:4303-417. DOI PubMed
20. Chazalviel J. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 1990;42:7355-67. DOI
PubMed
21. Peng H, Huang J, Cheng X, Zhang Q. Lithium-sulfur batteries: review on high-loading and high-energy lithium-sulfur batteries. Adv
Energy Mater 2017;7:1700260. DOI
22. Zhang L, Yang T, Du C, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental
transmission electron microscope set-up. Nat Nanotechnol 2020;15:94-8. DOI PubMed
23. Rosso M, Chassaing E, Chazalviel J, Gobron T. Onset of current-driven concentration instabilities in thin cell electrodeposition with
small inter-electrode distance. Electrochim Acta 2002;47:1267-73. DOI
24. Barton JL, Bockris, JOM. The electrolytic growth of dendrites from ionic solutions. Proc R Soc Lond A 1962;268:485-505. DOI
25. Yan Y, Shu C, Zheng R, et al. Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via
lithiophilic oxygen vacancy in Vo-TiO /Ti C Tx composite anodes. J Energy Chem 2022;65:654-65. DOI
2 3 2
26. Diggle JW, Despic AR, Bockris JO. The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 1969;116:1503.