Page 98 - Read Online
P. 98
Yan et al. Energy Mater 2023;3:300002 https://dx.doi.org/10.20517/energymater.2022.60 Page 31 of 32
146. Tu Z, Choudhury S, Zachman MJ, et al. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport
in batteries. Joule 2017;1:394-406. DOI
147. Yu Z, Mackanic DG, Michaels W, et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal
anodes. Joule 2019;3:2761-76. DOI
148. Xu Y, Gao L, Shen L, et al. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 2020;3:1685-
700. DOI
149. Kim MS, Deepika, Lee SH, et al. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as
lithium metal anodes. Sci Adv 2019;5:eaax5587. DOI PubMed PMC
150. Gao Y, Rojas T, Wang K, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically
active monolayer-regulated interface. Nat Energy 2020;5:534-42. DOI
151. Lin D, Liu Y, Chen W, et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous
reagent freon. Nano Lett 2017;17:3731-7. DOI PubMed
152. Chen X, Zhang Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. ACC Chem Res 2020;53:1992-
2002. DOI PubMed
153. Chen X, Shen X, Li B, et al. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew Chem
Int Ed 2018;57:734-7. DOI PubMed
154. Zhang X, Cheng X, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal
batteries. Adv Funct Mater 2017;27:1605989. DOI
155. Shim Y. Computer simulation study of the solvation of lithium ions in ternary mixed carbonate electrolytes: free energetics,
dynamics, and ion transport. Phys Chem Chem Phys 2018;20:28649-57. DOI PubMed
156. Zhang W, Zhang S, Fan L, et al. Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy
Lett 2019;4:644-50. DOI
157. Yan C, Yao Y, Chen X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal
batteries. Angew Chem Int Ed 2018;57:14055-9. DOI PubMed
158. Liu Y, Lin D, Li Y, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium
metal anode. Nat Commun 2018;9:3656. DOI PubMed PMC
159. Shi Q, Zhong Y, Wu M, Wang H, Wang H. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc
Natl Acad Sci USA 2018;115:5676-80. DOI PubMed PMC
160. Li W, Yao H, Yan K, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium
metal anode. Nat Commun 2015;6:1-8. DOI
161. Suo L, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science
2015;350:938-43. DOI
162. Xu R, Yan C, Xiao Y, Zhao M, Yuan H, Huang J. In situ regulated solid electrolyte interphase via reactive separators for highly
efficient lithium metal batteries. Energy Storage Mater 2020;28:401-6. DOI
163. Liu W, Li J, Li W, Xu H, Zhang C, Qiu X. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust
interphase in concentrated electrolyte. Nat Commun 2020;11:3629. DOI PubMed PMC
164. Ding JF, Xu R, Yao N, et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium
metal batteries. Angew Chem Int Ed 2021;60:11442-7. DOI PubMed
165. von Wald Cresce A, Gobet M, Borodin O, et al. Anion solvation in carbonate-based electrolytes. J Phys Chem C 2015;119:27255-64.
DOI
166. Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: From
“ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84. DOI
167. Freitag A, Langklotz U, Rost A, Stamm M, Ionov L. Ionically conductive polymer/ceramic separator for lithium-sulfur batteries.
Energy Storage Mater 2017;9:105-11. DOI
168. Yang L, Wang Z, Feng Y, et al. Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface
for solid state lithium-ion batteries. Adv Energy Mater 2017;7:1701437. DOI
169. Xu X, Hou G, Nie X, et al. Li P S /poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-
7 3 11
solid-state batteries. J Power Sources 2018;400:212-7. DOI
170. Zhu P, Yan C, Dirican M, et al. Li 0.33 La 0.557 TiO ceramic nanofiber-enhanced polyethylene oxide-based composite polymer
3
electrolytes for all-solid-state lithium batteries. J Mater Chem A 2018;6:4279-85. DOI
171. Zha W, Chen F, Yang D, Shen Q, Zhang L. High-performance Li La Zr Ta O /Poly(ethylene oxide)/Succinonitrile composite
0.6
3
12
1.4
6.4
electrolyte for solid-state lithium batteries. J Power Sources 2018;397:87-94. DOI
172. Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat
Commun 2014;5:5193. DOI PubMed
173. Liang J, Chen Q, Liao X, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew
Chem Int Ed 2020;132:6623-8. DOI PubMed
174. Wang Q, Yang J, Wang Z, Shi L, Zhao Y, Yuan S. Dual-scale Al O particles coating for high-performance separator and lithium
2
3
metal anode. Energy Technol 2020;8:1901429. DOI
175. Kim PJH, Pol VG. Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer toward