Page 98 - Read Online
P. 98

Yan et al. Energy Mater 2023;3:300002  https://dx.doi.org/10.20517/energymater.2022.60  Page 31 of 32

               146.      Tu Z, Choudhury S, Zachman MJ, et al. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport
                    in batteries. Joule 2017;1:394-406.  DOI
               147.      Yu Z, Mackanic DG, Michaels W, et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal
                    anodes. Joule 2019;3:2761-76.  DOI
               148.      Xu Y, Gao L, Shen L, et al. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 2020;3:1685-
                    700.  DOI
               149.      Kim MS, Deepika, Lee SH, et al. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as
                    lithium metal anodes. Sci Adv 2019;5:eaax5587.  DOI  PubMed  PMC
               150.      Gao Y, Rojas T, Wang K, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically
                    active monolayer-regulated interface. Nat Energy 2020;5:534-42.  DOI
               151.      Lin D, Liu Y, Chen W, et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous
                    reagent freon. Nano Lett 2017;17:3731-7.  DOI  PubMed
               152.      Chen X, Zhang Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. ACC Chem Res 2020;53:1992-
                    2002.  DOI  PubMed
               153.      Chen X, Shen X, Li B, et al. Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew Chem
                    Int Ed 2018;57:734-7.  DOI  PubMed
               154.      Zhang X, Cheng X, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal
                    batteries. Adv Funct Mater 2017;27:1605989.  DOI
               155.      Shim Y. Computer simulation study of the solvation of lithium ions in ternary mixed carbonate electrolytes: free energetics,
                    dynamics, and ion transport. Phys Chem Chem Phys 2018;20:28649-57.  DOI  PubMed
               156.      Zhang W, Zhang S, Fan L, et al. Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy
                    Lett 2019;4:644-50.  DOI
               157.      Yan C, Yao Y, Chen X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal
                    batteries. Angew Chem Int Ed 2018;57:14055-9.  DOI  PubMed
               158.      Liu Y, Lin D, Li Y, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium
                    metal anode. Nat Commun 2018;9:3656.  DOI  PubMed  PMC
               159.      Shi Q, Zhong Y, Wu M, Wang H, Wang H. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc
                    Natl Acad Sci USA 2018;115:5676-80.  DOI  PubMed  PMC
               160.      Li W, Yao H, Yan K, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium
                    metal anode. Nat Commun 2015;6:1-8.  DOI
               161.      Suo L, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science
                    2015;350:938-43.  DOI
               162.      Xu R, Yan C, Xiao Y, Zhao M, Yuan H, Huang J. In situ regulated solid electrolyte interphase via reactive separators for highly
                    efficient lithium metal batteries. Energy Storage Mater 2020;28:401-6.  DOI
               163.      Liu W, Li J, Li W, Xu H, Zhang C, Qiu X. Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust
                    interphase in concentrated electrolyte. Nat Commun 2020;11:3629.  DOI  PubMed  PMC
               164.      Ding JF, Xu R, Yao N, et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium
                    metal batteries. Angew Chem Int Ed 2021;60:11442-7.  DOI  PubMed
               165.      von Wald Cresce A, Gobet M, Borodin O, et al. Anion solvation in carbonate-based electrolytes. J Phys Chem C 2015;119:27255-64.
                    DOI
               166.      Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: From
                    “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84.  DOI
               167.      Freitag A, Langklotz U, Rost A, Stamm M, Ionov L. Ionically conductive polymer/ceramic separator for lithium-sulfur batteries.
                    Energy Storage Mater 2017;9:105-11.  DOI
               168.      Yang L, Wang Z, Feng Y, et al. Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface
                    for solid state lithium-ion batteries. Adv Energy Mater 2017;7:1701437.  DOI
               169.      Xu X, Hou G, Nie X, et al. Li P S /poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-
                                        7 3 11
                    solid-state batteries. J Power Sources 2018;400:212-7.  DOI
               170.      Zhu P, Yan C, Dirican M, et al. Li 0.33 La 0.557 TiO  ceramic nanofiber-enhanced polyethylene oxide-based composite polymer
                                                     3
                    electrolytes for all-solid-state lithium batteries. J Mater Chem A 2018;6:4279-85.  DOI
               171.      Zha W, Chen F, Yang D, Shen Q, Zhang L. High-performance Li La Zr Ta O /Poly(ethylene oxide)/Succinonitrile composite
                                                                       0.6
                                                                  3
                                                                          12
                                                                    1.4
                                                               6.4
                    electrolyte for solid-state lithium batteries. J Power Sources 2018;397:87-94.  DOI
               172.      Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat
                    Commun 2014;5:5193.  DOI  PubMed
               173.      Liang J, Chen Q, Liao X, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew
                    Chem Int Ed 2020;132:6623-8.  DOI  PubMed
               174.      Wang Q, Yang J, Wang Z, Shi L, Zhao Y, Yuan S. Dual-scale Al O  particles coating for high-performance separator and lithium
                                                               2
                                                                 3
                    metal anode. Energy Technol 2020;8:1901429.  DOI
               175.      Kim PJH, Pol VG. Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer toward
   93   94   95   96   97   98   99   100   101   102   103