Page 94 - Read Online
P. 94
Yan et al. Energy Mater 2023;3:300002 https://dx.doi.org/10.20517/energymater.2022.60 Page 27 of 32
DOI
27. Yamaki J, Tobishima S, Hayashi K, Keiichi Saito, Nemoto Y, Arakawa M. A consideration of the morphology of electrochemically
deposited lithium in an organic electrolyte. J Power Sources 1998;74:219-27. DOI
28. Witten TA, Sander LM. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 1981;47:1400. DOI
29. Mayers MZ, Kaminski JW, Miller TF. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J
Phys Chem C 2012;116:26214-21. DOI
30. Chandrasekar M, Pushpavanam M. Pulse and pulse reverse plating-conceptual, advantages and applications. Electrochim Acta
2008;53:3313-22. DOI
31. Brissot C, Rosso M, Chazalviel J-, Lascaud S. In situ concentration cartography in the neighborhood of dendrites growing in
lithium/polymer-electrolyte/lithium cells. J Electrochem Soc 1999;146:4393-400. DOI
32. Brissot C, Rosso M, Chazalviel J, Lascaud S. Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 1999;81-
82:925-9. DOI
33. Rosso M, Brissot C, Teyssot A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 2006;51:5334-
40. DOI
34. Arakawa M, Tobishima S, Nemoto Y, Ichimura M, Yamaki J. Lithium electrode cycleability and morphology dependence on current
density. J Power Sources 1993;43:27-35. DOI
35. Chen L, Fan X, Ji X, Chen J, Hou S, Wang C. High-energy Li metal battery with lithiated host. Joule 2019;3:732-44. DOI
36. Ye H, Zheng ZJ, Yao HR, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li
metal batteries. Angew Chem Int Ed 2019;58:1094-9. DOI PubMed
37. Li X, Zheng J, Ren X, et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent
compositions and adding combinational additives. Adv Energy Mater 2018;8:1703022. DOI
38. Louli AJ, Eldesoky A, Weber R, et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis.
Nat Energy 2020;5:693-702. DOI
39. Jungjohann KL, Gannon RN, Goriparti S, et al. Cryogenic laser ablation reveals short-circuit mechanism in lithium metal batteries.
ACS Energy Lett 2021;6:2138-44. DOI
40. Chan CK, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008;3:31-5.
DOI PubMed
41. Xu G, Li J, Wang C, et al. The formation/decomposition equilibrium of LiH and its Contribution on anode failure in practical lithium
metal batteries. Angew Chem Int Ed 2021;133:7849-55. DOI PubMed
42. Lu D, Shao Y, Lozano T, et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater
2015;5:1400993. DOI
43. Li Z, Huang J, Yann Liaw B, Metzler V, Zhang J. A review of lithium deposition in lithium-ion and lithium metal secondary
batteries. J Power Sources 2014;254:168-82. DOI
44. Colclasure AM, Li X, Cao L, Finegan DP, Yang C, Smith K. Significant life extension of lithium-ion batteries using compact metallic
lithium reservoir with passive control. Electrochim Acta 2021;370:137777. DOI
45. Yu SH, Huang X, Brock JD, Abruña HD. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study.
J Am Chem Soc 2019;141:8441-9. DOI PubMed
46. Conder J, Marino C, Novák P, Villevieille C. Do imaging techniques add real value to the development of better post-Li-ion
batteries? J Mater Chem A 2018;6:3304-27. DOI
47. Osaka T, Momma T, Nishimura K, Tajima T. In situ observation and evaluation of electrodeposited lithium by means of optical
microscopy with alternating current impedance spectroscopy. J Electrochem Soc 1993;140:2745-8. DOI
48. Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and
dissolution of lithium. J Power Sources 2014;261:112-9. DOI
49. Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during
electrodeposition and dissolution. Electrochim Acta 2014;136:529-36. DOI
50. Shen K, Wang Z, Bi X, et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries. Adv Energy Mater
2019;9:1900260. DOI
51. Rulev AA, Sergeev AV, Yashina LV, Jacob T, Itkis DM. Electromigration in lithium whisker formation plays insignificant role
during electroplating. ChemElectroChem 2019;6:1324-8. DOI
52. Sagane F, Ikeda K, Okita K, Sano H, Sakaebe H, Iriyama Y. Effects of current densities on the lithium plating morphology at a
lithium phosphorus oxynitride glass electrolyte/copper thin film interface. J Power Sources 2013;233:34-42. DOI
53. Foroozan T, Sharifi-asl S, Shahbazian-yassar R. Mechanistic understanding of Li dendrites growth by in-situ/operando imaging
techniques. J Power Sources 2020;461:228135. DOI
54. Krauskopf T, Dippel R, Hartmann H, et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule
2019;3:2030-49. DOI
55. Motoyama M, Ejiri M, Iriyama Y. Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J
Electrochem Soc 2015;162:A7067-71. DOI
56. Rong G, Zhang X, Zhao W, et al. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium
dendrite growth and dissolution. Adv Mater 2017;29:1606187. DOI PubMed