Page 97 - Read Online
P. 97
Page 30 of 32 Yan et al. Energy Mater 2023;3:300002 https://dx.doi.org/10.20517/energymater.2022.60
116. Wang Q, Liu B, Shen Y, et al. Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci 2021;8:e2101111.
DOI PubMed PMC
117. Zhang H, Liao X, Guan Y, et al. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat
Commun 2018;9:3729. DOI PubMed PMC
118. Yang C, Zhang L, Liu B, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive
framework. Proc Natl Acad Sci USA 2018;115:3770-5. DOI PubMed PMC
119. Hitz GT, Mcowen DW, Zhang L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater Today
2019;22:50-7. DOI
120. Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc Natl Acad Sci USA
2017;114:3584-9. DOI
121. Guo W, Liu S, Guan X, Zhang X, Liu X, Luo J. Mixed ion and electron-conducting scaffolds for high-rate lithium metal anodes. Adv
Energy Mater 2019;9:1900193. DOI
122. Zhang X, Lv R, Wang A, Guo W, Liu X, Luo J. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew Chem Int Ed
2018;130:15248-53. DOI PubMed
123. Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal
capacity, high rate lithium-metal anodes. Adv Mater 2018:e1801328. DOI PubMed
124. Li G, Liu Z, Huang Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects.
Nat Energy 2018;3:1076-83. DOI
125. Huo H, Gao J, Zhao N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat
Commun 2021;12:176. DOI PubMed PMC
126. Zhao Q, Stalin S, Archer LA. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021;5:1119-
42. DOI
127. Chai J, Chen B, Xian F, et al. Dendrite-free lithium deposition via flexible-rigid coupling composite network for LiNi Mn O /Li
0.5 1.5 4
metal batteries. Small 2018;14:1802244. DOI
128. Khurana R, Schaefer JL, Archer LA, Coates GW. Suppression of lithium dendrite growth using cross-linked
polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc
2014;136:7395-402. DOI PubMed
129. Cao X, Ren X, Zou L, et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize
Li depletion and pulverization. Nat Energy 2019;4:796-805. DOI
130. Dey A. Lithium anode film and organic and inorganic electrolyte batteries. Thin Solid Films 1977;43:131-71. DOI
131. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76. DOI PubMed
132. Huang Z, Choudhury S, Gong H, Cui Y, Bao Z. A cation-tethered flowable polymeric interface for enabling stable deposition of
metallic lithium. J Am Chem Soc 2020;142:21393-403. DOI PubMed
133. Gao S, Sun F, Liu N, Yang H, Cao P. Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries - a
review. Mater Today 2020;40:140-59. DOI
134. Hao F, Verma A, Mukherjee PP. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes. J Mater Chem A
2018;6:19664-71. DOI
135. Tamwattana O, Park H, Kim J, et al. High-dielectric polymer coating for uniform lithium deposition in anode-free lithium batteries.
ACS Energy Lett 2021;6:4416-25. DOI
136. Monroe C, Newman J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc
2005;152:A396. DOI
137. Chen K, Pathak R, Gurung A, et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium
metal anodes. Energy Storage Mater 2019;18:389-96. DOI
138. Yuan Y, Wu F, Chen G, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal
anode. J Energy Chem 2019;37:197-203. DOI
139. Chen H, Pei A, Lin D, et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv
Energy Mater 2019;9:1900858. DOI
140. Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater
2016;28:1853-8. DOI PubMed
141. Tian R, Feng X, Duan H, et al. Low-weight 3D Al O network as an artificial layer to stabilize lithium deposition. ChemSusChem
2 3
2018;11:3243-52. DOI
142. Liu Y, Tzeng Y, Lin D, et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes. Joule 2018;2:1595-
609. DOI
143. Shi F, Pei A, Boyle DT, et al. Lithium metal stripping beneath the solid electrolyte interphase, Proc Natl Acad Sci USA
2018;115:8529-34. DOI
144. Tewari D, Mukherjee PP. Mechanistic understanding of electrochemical plating and stripping of metal electrodes. J Mater Chem A
2019;7:4668-88. DOI
145. Song J, Lee H, Choo MJ, Park JK, Kim HT. Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium
metal electrodes. Sci Rep 2015;5:14458. DOI PubMed PMC