Page 40 - Read Online
P. 40
Zhang et al. Chem Synth 2023;3:10 https://dx.doi.org/10.20517/cs.2022.40 Page 33 of 35
2017;117:1515-63. DOI PubMed
98. Guan X, Chen F, Fang Q, Qiu S. Design and applications of three dimensional covalent organic frameworks. Chem Soc Rev
2020;49:1357-84. DOI PubMed
99. Stegbauer L, Hahn MW, Jentys A, et al. Tunable water and CO sorption properties in isostructural azine-based covalent organic
2
frameworks through polarity engineering. Chem Mater 2015;27:7874-81. DOI
100. Tan KT, Tao S, Huang N, Jiang D. Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nat Commun
2021;12:6747. DOI PubMed
101. Biswal BP, Kandambeth S, Chandra S, et al. Pore surface engineering in porous, chemically stable covalent organic frameworks for
water adsorption. J Mater Chem A 2015;3:23664-9. DOI
102. Chen Y, Shi Z-L, Wei L, et al. Guest-dependent dynamics in a 3D covalent organic framework. J Am Chem Soc 2019;141:3298-303.
DOI PubMed
103. Pérez-Carvajal J, Boix G, Imaz I, Maspoch D. The imine-based COF TpPa-1 as an efficient cooling adsorbent that can be regenerated
by heat or light. Adv Energy Mater 2019;9:1901535. DOI
104. Wang X, Chen L, Chong SY, et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from
water. Nat Chem 2018;10:1180-9. DOI PubMed
105. Ma J, Fu X-B, Li Y, Xia T, Pan L, Yao Y-F. Solid-state NMR study of adsorbed water molecules in covalent organic framework
materials. Micropor Mesopor Mater 2020;305:110287. DOI
106. Li W, Xia X, Li S. Screening of covalent-organic frameworks for adsorption heat pumps. ACS Appl Mater Interf 2020;12:3265-73.
DOI PubMed
107. Gilmanova L, Bon V, Shupletsov L, et al. Chemically stable carbazole-based imine covalent organic frameworks with acidochromic
response for humidity control applications. J Am Chem Soc 2021;143:18368-73. DOI PubMed
108. Karak S, Kandambeth S, Biswal BP, et al. Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta
process. J Am Chem Soc 2017;139:1856-62. DOI PubMed
109. Jiang S, Meng L, Ma W, et al. Dual-functional two-dimensional covalent organic frameworks for water sensing and harvesting.
Mater Chem Front 2021;5:4193-201. DOI
110. Nguyen HL, Gropp C, Hanikel N, Möckel A, Lund A, Yaghi OM. Hydrazine-hydrazide-linked covalent organic frameworks for
water harvesting. ACS Cent Sci 2022;8:926-32. DOI PubMed
111. Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev 2012;112:2853-88. DOI PubMed
112. Deng F, Chen Z, Wang C, Xiang C, Poredoš P. Wang R. Hygroscopic porous polymer for sorption-based atmospheric water
harvesting. . Adv Sci 2022;9:2204724. DOI PubMed
113. Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem Rev
2020;120:7642-707. DOI PubMed
114. Nandakumar DK, Zhang Y, Ravi SK, Guo N, Zhang C, Tan SC. Solar energy triggered clean water harvesting from humid air
existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv Mater 2019;31:1806730. DOI PubMed
115. Yang L, Ravi SK, Nandakumar DK, et al. A hybrid artificial photocatalysis system splits atmospheric water for simultaneous
dehumidification and power generation. Adv Mater 2019;31:1902963. DOI PubMed
116. Zhao F, Zhou X, Liu Y, Shi Y, Dai Y, Yu G. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv Mater
2019;31:1806446. DOI PubMed
117. Yang J, Zhang X, Qu H, et al. A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban
agriculture. Adv Mater 2020;32:2002936. DOI PubMed
118. Lei C, Guo Y, Guan W, Lu H, Shi W, Yu G. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew Chem Int
Ed 2022;61:e202200271. DOI PubMed
119. Ni F, Xiao P, Zhang C, Chen T. Hygroscopic polymer gels toward atmospheric moisture exploitations for energy management and
freshwater generation. Matter 2022;5:2624-58. DOI
120. Hou Y, Sheng Z, Fu C, Kong J, Zhang X. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat
allocation and microwave absorption. Nat Commun 2022;13:1227. DOI PubMed
121. Chang X, Li S, Li N, et al. Marine biomass-derived, hygroscopic and temperature-responsive hydrogel beads for atmospheric water
harvesting and solar-powered irrigation. J Mater Chem A 2022;10:18170-84. DOI
122. Ni F, Qiu N, Xiao P, et al. Tillandsia-inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting.
Angew Chem Int Ed 2020;59:19237-46. DOI PubMed
123. Aleid S, Wu M, Li R, et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater
Lett 2022;4:511-20. DOI
124. Entezari A, Ejeian M, Wang R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts. ACS
Mater Lett 2020;2:471-7. DOI
125. Xu J, Li T, Yan T, et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with
vertically aligned nanocomposite sorbent. Energy Environ Sci 2021;14:5979-94. DOI
126. Lu K, Liu C, Liu J, et al. Hierarchical natural pollen cell-derived composite sorbents for efficient atmospheric water harvesting. ACS
Appl Mater Interf 2022;14:33032-40. DOI PubMed
127. Wang M, Sun T, Wan D, et al. Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting.