Page 38 - Read Online
P. 38
Zhang et al. Chem Synth 2023;3:10 https://dx.doi.org/10.20517/cs.2022.40 Page 31 of 35
Appl Therm Eng 2013;50:1015-20. DOI
39. Tashiro Y, Kubo M, Katsumi Y, Meguro T, Komeya K. Assessment of adsorption-desorption characteristics of adsorbents for
adsorptive desiccant cooling system. J Mater Sci 2004;39:1315-9. DOI
40. Ng KC, Chua HT, Chung CY, et al. Experimental investigation of the silica gel-water adsorption isotherm characteristics. Appl Therm
Eng 2001;21:1631-42. DOI
41. Ng EP, Mintova S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Micropor Mesopor Mater
2008;114:1-26. DOI
42. Resasco DE, Crossley PS, Wang B, White JL. Interaction of water with zeolites: a review. Catal Rev Sci Eng 2021;63:302-62. DOI
43. Wu WD, Zhang H, Men CL. Performance of a modified zeolite 13X-water adsorptive cooling module powered by exhaust waste
heat. Int J Therm Sci 2011;50:2042-9. DOI
44. Henninger SK, Ernst SJ, Gordeeva L, et al. New materials for adsorption heat transformation and storage. Renew Energy
2017;110:59-68. DOI
45. Wynnyk KG, Hojjati B, Marriott RA. High-pressure sour gas and water adsorption on zeolite 13X. Ind Eng Chem Res
2018;57:15357-65. DOI
46. Wynnyk KG, Hojjati B, Marriott RA. Sour gas and water adsorption on common high-pressure desiccant materials: zeolite 3A,
zeolite 4A, and silica gel. J Chem Eng Data 2019;64:3156-63. DOI
47. Krajnc A, Varlec J, Mazaj M, Ristić A, Logar NZ, Mali G. Superior performance of microporous aluminophosphate with LTA
topology in solar-energy storage and heat reallocation. Adv Energy Mater 2017;7:1601815. DOI
48. Kloprogge JT, Duong LV, Frost RL. A review of the synthesis and characterisation of pillared clays and related porous materials for
cracking of vegetable oils to produce biofuels. Environ Geol 2005;47:967. DOI
49. Zhu HY, Gao WH, Vansant EF. The porosity and water adsorption of alumina pillared montmorillonite. J Colloid Interf Sci
1995;171:377. DOI
50. Aso M, Ito K, Sugino H, et al. Thermal behavior, structure, and dynamics of low-temperature water confined in mesoporous
organosilica by differential scanning calorimetry, X-ray diffraction, and quasi-elastic neutron scattering. Pure Appl Chem
2013;85:289-305. DOI
51. Mietner JB, Brieler FJ, Lee YJ, Fröba M. Properties of water confined in periodic mesoporous organosilicas: nanoimprinting the local
structure. Angew Chem Int Ed 2017;56:12348-51. DOI PubMed
52. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science
2013;341:1230444. DOI PubMed
53. Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995;378:703-6.
DOI
54. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem
Rev 2020;120:1438-511. DOI PubMed
55. Qian Q, Asinger QA, Lee MJ, et al. MOF-based membranes for gas separations. Chem Rev 2020;120:8161-266. DOI PubMed
56. Xie S, Monnens W, Wan K, et al. Cathodic electrodeposition of MOF films using hydrogen peroxide. Angew Chem Int Ed
2021;60:24950-7. DOI PubMed
57. Gutiérrez M, Zhang Y, Tan JC. Confinement of luminescent guests in metal-organic frameworks: understanding pathways from
synthesis and multimodal characterization to potential applications of LG@MOF systems. Chem Rev 2022;122:10438-83. DOI
PubMed
58. Terzopoulou A, Nicholas JD, Chen XZ, Nelson BJ, Pané S, Puigmartí-Luis J. Metal-organic frameworks in motion. Chem Rev
2020;120:11175-93. DOI PubMed
59. He B, Zhang Q, Pan Z. Freestanding metal-organic frameworks and their derivatives: an emerging platform for electrochemical
energy storage and conversion. Chem Rev 2022;122:10087-125. DOI PubMed
60. Peng Y, Tan Q, Huang H, et al. Customization of functional MOFs by a modular design strategy for target applications. Chem Synth
2022;2:15. DOI
61. Li H, Li C, Wang Y, et al. Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics
for high performance lithium-selenium batteries. Chem Synth 2022;2:8. DOI
62. Nijem N, Canepa P, Kaipa U, et al. Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated
metal-organic framework. J Am Chem Soc 2013;135:12615-26. DOI PubMed
63. Nguyen JG, Cohen SM. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification.
J Am Chem Soc 2010;132:4560-1. DOI PubMed
64. Zhang JP, Zhu AX, Lin RB, Qi XL, Chen XM. Pore surface tailored SOD-type metal-organic zeolites. Adv Mater 2011;23:1268-71.
DOI PubMed
65. Yang Q, Vaesen S, Ragon F, et al. A water stable metal-organic framework with optimal features for CO capture. Angew Chem Int
2
Ed 2013;52:10316-20. DOI PubMed
66. Seo YK, Yoon JW, Lee JS, et al. Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced
water adsorbents. Adv Mater 2012;24:806-10. DOI PubMed
67. Wade CR, Corrales-Sanchez T, Narayan TC, Dincă M. Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water
adsorption properties. Energy Environ Sci 2013;6:2172-7. DOI