Page 41 - Read Online
P. 41
Page 34 of 35 Zhang et al. Chem Synth 2023;3:10 https://dx.doi.org/10.20517/cs.2022.40
Nano Energy 2021;80:105569. DOI
128. Li R, Wu M, Shi Y, et al. Hybrid water vapor sorbent design with pollution shielding properties: extracting clean water from polluted
bulk water sources. J Mater Chem A 2021;9:14731-40. DOI
129. Yao H, Zhang P, Huang Y, Cheng H, Li C, Qu L. Highly efficient clean water production from contaminated air with a wide
humidity range. Adv Mater 2020;32:1905875. DOI PubMed
130. Yu S, Xing GL, Chen LH, Ben T, Su BL. Crystalline porous organic salts: from micropore to hierarchical pores. Adv Mater
2020;32:2003270. DOI PubMed
131. Xing G, Bassanetti I, Bracco S, et al. A double helix of opposite charges to form channels with unique CO selectivity and dynamics.
2
Chem Sci 2019;10:730-6. DOI PubMed
132. Zhao Y, Fan, Pei C, et al. Colossal negative linear compressibility in porous organic salts. J Am Chem Soc 2020;142:3593-9. DOI
PubMed
133. Comotti A, Bracco S, Yamamoto A, et al. Engineering switchable rotors in molecular crystals with open porosity. J Am Chem Soc
2014;136:618-21. DOI PubMed
134. Xiao W, Hu C, Ward MD. Guest exchange through single crystal-single crystal transformations in a flexible hydrogen-bonded
framework. J Am Chem Soc 2014;136:14200-6. DOI PubMed
135. Liang WB, Carraro F, Solomon MB, et al. Enzyme encapsulation in a porous hydrogen-bonded organic framework. J Am Chem Soc
2019;141:14298-305. DOI PubMed
136. Ami T, Oka K, Tsuchiya K, Tohnai N. Porous organic salts: diversifying void structures and environments. Angew Chem Int Ed
2022;61:e202202597. DOI PubMed
137. Boer SA, Conte L, Tarzia A, et al. Water sorption controls extreme single-crystal-to-single-crystal molecular reorganization in
hydrogen bonded organic frameworks. Chem Eur J 2022;28:e202201929. DOI PubMed
138. Xing G, Yan T, Das S, Ben T, Qiu S. Synthesis of crystalline porous organic salts with high proton conductivity. Angew Chem Int Ed
2018;57:5345-49. DOI PubMed
139. Wang H, Shao Y, Mei S, et al. Polymer-derived heteroatom-doped porous carbon materials. Chem Rev 2020;120:9363-419. DOI
PubMed
140. Lodewyckx P. The effect of water uptake in ultramicropores on the adsorption of water vapour in activated carbon. Carbon N Y
2010;48:2549-53. DOI
141. Tao Y, Muramatsu H, Endo M, Kaneko K. Evidence of water adsorption in hydrophobic nanospaces of highly pure double-walled
carbon nanotubes. J Am Chem Soc 2010;132:1214-5. DOI PubMed
142. Yuan M, Gao M, Shi Q, Dong J. Understanding the characteristics of water adsorption in zeolitic imidazolate framework-derived
porous carbon materials. Chem Eng J 2020;379:122412. DOI
143. Zhang E, Hao GP, Casco ME, Bon V, Grätz S, Borchardt L. Nanocasting in ball mills - combining ultra-hydrophilicity and ordered
mesoporosity in carbon materials. J Mater Chem A 2018;6:859-65. DOI
144. Liu L, Tan S, Horikawa T, Do DD, Nicholson D, Liu J. Water adsorption on carbon - a review. Adv Colloid Interf Sci 2017;250:64-
78. DOI
145. Hao G-P, Mondin G, Zheng Z, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture. Angew Chem
Int Ed 2015;54:1941-5. DOI PubMed
146. Entezari A, Ejeian M, Wang RZ. Extraordinary air water harvesting performance with three phase sorption. Mater Today Energy
2019;13:362-73. DOI
147. Li R, Shi Y, Wu M, Hong S, Wang P. Improving atmospheric water production yield: enabling multiple water harvesting cycles with
nano sorbent. Nano Energy 2020;67:104255. DOI
148. Legrand U, Klassen D, Watson S, et al. Nanoporous sponges as carbon-based sorbents for atmospheric water generation. Ind Eng
Chem Res 2021;60:12923-12933. DOI
149. Kumar KV, Preuss K, Guo ZX, Titirici MM. Understanding the hydrophilicity and water adsorption behavior of nanoporous
nitrogen-doped carbons. J Phys Chem C 2016;120:18167-79. DOI
150. Byun Y, Coskun A. Epoxy-functionalized porous organic polymers via the diels-alder cycloaddition reaction for atmospheric water
capture. Angew Chem Int Ed 2018;57:3173-7. DOI PubMed
151. Song Y, Xu N, Liu G, et al. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous
carbon with fast-diffusion water channels. Nat Nanotechnol 2022;17:857-63. DOI PubMed
152. Guo Y, Guan W, Lei C, Lu H, Shi W, Yu G. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid
environments. Nat Commun 2022;13:2761. DOI PubMed
153. Wright AM, Rieth AJ, Yang S, Wang EN, Dincă M. Precise control of pore hydrophilicity enabled by post-synthetic cation exchange
in metal-organic frameworks. Chem Sci 2018;9:3856-9. DOI PubMed
154. Wang H, Yang H, Woon R, Lu Y, Diao Y, D’Arcy JM. Microtubular PEDOT-coated bricks for atmospheric water harvesting. ACS
Appl Mater Interf 2021;13:34671-8. DOI PubMed
155. Furukawa H, Ko N, Go YB, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010;329:424-8. DOI PubMed
156. Hu Y, Fang Z, Wan X, et al. Ferrocene dicarboxylic acid ligand-exchanged hollow MIL-101(Cr) nanospheres for solar-driven
atmospheric water harvesting. ACS Sustain Chem Eng 2022;10:6446-55. DOI
157. Wang J, Deng C, Zhong G, et al. High-yield and scalable water harvesting of honeycomb hygroscopic polymer driven by natural