Page 41 - Read Online
P. 41

Page 34 of 35                       Zhang et al. Chem Synth 2023;3:10  https://dx.doi.org/10.20517/cs.2022.40

                    Nano Energy 2021;80:105569.  DOI
               128.      Li R, Wu M, Shi Y, et al. Hybrid water vapor sorbent design with pollution shielding properties: extracting clean water from polluted
                    bulk water sources. J Mater Chem A 2021;9:14731-40.  DOI
               129.      Yao H, Zhang P, Huang Y, Cheng H, Li C, Qu L. Highly efficient clean water production from contaminated air with a wide
                    humidity range. Adv Mater 2020;32:1905875.  DOI  PubMed
               130.      Yu S, Xing GL, Chen LH, Ben T, Su BL. Crystalline porous organic salts: from micropore to hierarchical pores. Adv Mater
                    2020;32:2003270.  DOI  PubMed
               131.      Xing G, Bassanetti I, Bracco S, et al. A double helix of opposite charges to form channels with unique CO  selectivity and dynamics.
                                                                                         2
                    Chem Sci 2019;10:730-6.  DOI  PubMed
               132.      Zhao Y, Fan, Pei C, et al. Colossal negative linear compressibility in porous organic salts. J Am Chem Soc 2020;142:3593-9.  DOI
                    PubMed
               133.      Comotti A, Bracco S, Yamamoto A, et al. Engineering switchable rotors in molecular crystals with open porosity. J Am Chem Soc
                    2014;136:618-21.  DOI  PubMed
               134.      Xiao W, Hu C, Ward MD. Guest exchange through single crystal-single crystal transformations in a flexible hydrogen-bonded
                    framework. J Am Chem Soc 2014;136:14200-6.  DOI  PubMed
               135.      Liang WB, Carraro F, Solomon MB, et al. Enzyme encapsulation in a porous hydrogen-bonded organic framework. J Am Chem Soc
                    2019;141:14298-305.  DOI  PubMed
               136.      Ami T, Oka K, Tsuchiya K, Tohnai N. Porous organic salts: diversifying void structures and environments. Angew Chem Int Ed
                    2022;61:e202202597.  DOI  PubMed
               137.      Boer SA, Conte L, Tarzia A, et al. Water sorption controls extreme single-crystal-to-single-crystal molecular reorganization in
                    hydrogen bonded organic frameworks. Chem Eur J 2022;28:e202201929.  DOI  PubMed
               138.      Xing G, Yan T, Das S, Ben T, Qiu S. Synthesis of crystalline porous organic salts with high proton conductivity. Angew Chem Int Ed
                    2018;57:5345-49.  DOI  PubMed
               139.      Wang H, Shao Y, Mei S, et al. Polymer-derived heteroatom-doped porous carbon materials. Chem Rev 2020;120:9363-419.  DOI
                    PubMed
               140.      Lodewyckx P. The effect of water uptake in ultramicropores on the adsorption of water vapour in activated carbon. Carbon N Y
                    2010;48:2549-53.  DOI
               141.      Tao Y, Muramatsu H, Endo M, Kaneko K. Evidence of water adsorption in hydrophobic nanospaces of highly pure double-walled
                    carbon nanotubes. J Am Chem Soc 2010;132:1214-5.  DOI  PubMed
               142.      Yuan M, Gao M, Shi Q, Dong J. Understanding the characteristics of water adsorption in zeolitic imidazolate framework-derived
                    porous carbon materials. Chem Eng J 2020;379:122412.  DOI
               143.      Zhang E, Hao GP, Casco ME, Bon V, Grätz S, Borchardt L. Nanocasting in ball mills - combining ultra-hydrophilicity and ordered
                    mesoporosity in carbon materials. J Mater Chem A 2018;6:859-65.  DOI
               144.      Liu L, Tan S, Horikawa T, Do DD, Nicholson D, Liu J. Water adsorption on carbon - a review. Adv Colloid Interf Sci 2017;250:64-
                    78.  DOI
               145.      Hao G-P, Mondin G, Zheng Z, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture. Angew Chem
                    Int Ed 2015;54:1941-5.  DOI  PubMed
               146.      Entezari A, Ejeian M, Wang RZ. Extraordinary air water harvesting performance with three phase sorption. Mater Today Energy
                    2019;13:362-73.  DOI
               147.      Li R, Shi Y, Wu M, Hong S, Wang P. Improving atmospheric water production yield: enabling multiple water harvesting cycles with
                    nano sorbent. Nano Energy 2020;67:104255.  DOI
               148.      Legrand U, Klassen D, Watson S, et al. Nanoporous sponges as carbon-based sorbents for atmospheric water generation. Ind Eng
                    Chem Res 2021;60:12923-12933.  DOI
               149.      Kumar KV, Preuss K, Guo ZX, Titirici MM. Understanding the hydrophilicity and water adsorption behavior of nanoporous
                    nitrogen-doped carbons. J Phys Chem C 2016;120:18167-79.  DOI
               150.      Byun Y, Coskun A. Epoxy-functionalized porous organic polymers via the diels-alder cycloaddition reaction for atmospheric water
                    capture. Angew Chem Int Ed 2018;57:3173-7.  DOI  PubMed
               151.      Song Y, Xu N, Liu G, et al. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous
                    carbon with fast-diffusion water channels. Nat Nanotechnol 2022;17:857-63.  DOI  PubMed
               152.      Guo Y, Guan W, Lei C, Lu H, Shi W, Yu G. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid
                    environments. Nat Commun 2022;13:2761.  DOI  PubMed
               153.      Wright AM, Rieth AJ, Yang S, Wang EN, Dincă M. Precise control of pore hydrophilicity enabled by post-synthetic cation exchange
                    in metal-organic frameworks. Chem Sci 2018;9:3856-9.  DOI  PubMed
               154.      Wang H, Yang H, Woon R, Lu Y, Diao Y, D’Arcy JM. Microtubular PEDOT-coated bricks for atmospheric water harvesting. ACS
                    Appl Mater Interf 2021;13:34671-8.  DOI  PubMed
               155.      Furukawa H, Ko N, Go YB, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010;329:424-8.  DOI  PubMed
               156.      Hu Y, Fang Z, Wan X, et al. Ferrocene dicarboxylic acid ligand-exchanged hollow MIL-101(Cr) nanospheres for solar-driven
                    atmospheric water harvesting. ACS Sustain Chem Eng 2022;10:6446-55.  DOI
               157.      Wang J, Deng C, Zhong G, et al. High-yield and scalable water harvesting of honeycomb hygroscopic polymer driven by natural
   36   37   38   39   40   41   42   43   44   45   46