Page 42 - Read Online
P. 42
Zhang et al. Chem Synth 2023;3:10 https://dx.doi.org/10.20517/cs.2022.40 Page 35 of 35
sunlight. Cell Rep Phys Sci 2022;3:100954. DOI
158. Zhang Z, Fu H, Li Z, et al. Hydrogel materials for sustainable water resources harvesting & treatment: synthesis, mechanism and
applications. Chem Eng J 2022;439:135756. DOI
159. Li J, Hu Y, Vlassak J, Suo Z. Experimental determination of equations of state for ideal elastomeric gels. Soft Matter 2012;8:8121.
DOI
160. Taheri E, Fatehizadeh A, Lima EC, Rezakazemi M. High surface area acid-treated biochar from pomegranate husk for 2,4-
dichlorophenol adsorption from aqueous solution. Chemosphere 2022;295:133850. DOI
161. Messaoudi NE, Khomri ME, Fernine Y, et al. Hydrothermally engineered Eriobotrya japonica leaves/MgO nanocomposites with
potential applications in wastewater treatment. Groundw Sustain Dev 2022;16:100728. DOI
162. LaPotin A, Kim H, Rao SR, Wang EN. Adsorption-based atmospheric water harvesting: impact of material and component properties
on system-level performance. Acc Chem Res 2019;52:1588-97. DOI PubMed
163. Dehmani Y, Dridi D, Lamhasni T, Abouarnadasse S, Chtourou R, Lima EC. Review of phenol adsorption on transition metal oxides
and other adsorbents. J Water Process Eng 2022;49:102965. DOI
164. Bilal M, Sultan M, Morosuk T, et al. Adsorption-based atmospheric water harvesting: a review of adsorbents and systems. Int
Commun Heat Mass Transf 2022;133:105961. DOI
165. Kim S, Liang Y, Kang S, Choi H. Solar-assisted smart nanofibrous membranes for atmospheric water harvesting. Chem Eng J
2021;425:131601. DOI
166. Lyu T, Wang Z, Liu R, Chen K, Liu H, Tian Y. Macroporous hydrogel for high-performance atmospheric water harvesting. ACS Appl
Mater Interf 2022;14:32433-43. DOI PubMed
167. Chen H, Ran T, Gan Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nat Mater 2018;17:935-42. DOI
PubMed
168. Wang H-J, Kleinhammes A, McNicholas TP, Liu J, Wu Y. Water adsorption in nanoporous carbon characterized by in situ NMR:
measurements of pore size and pore size distribution. J Phys Chem C 2014;118:8474-80. DOI
169. Zhang X, Song B, Jiang L. From dynamic superwettability to ionic/molecular superfluidity. Acc Chem Res 2022;55:1195-204. DOI
PubMed
170. Kapitza P. Viscosity of liquid helium below the λ-point. Nature 1938;141:74. DOI
171. Allen JF, Misener A. Flow of liquid helium II. Nature 1938;141:75. DOI
172. Gasparini FM, Kimball MO, Mooney KP, Diaz-Avila M. Finite-size scaling of He 4 at the superfluid transition. Rev Mod Phys
2008;80:1009. DOI
173. Kolomeisky AB. Channel-facilitated molecular transport across membranes: attraction, repulsion, and asymmetry. Phys Rev Lett
2007;98:048105. DOI PubMed
174. Zhang X, Song B, Jiang L. Driving force of molecular/ionic superfluid formation. CCS Chem 2021;3:1258-66. DOI
175. Wu K, Chen Z, Li J, Li X, Xu J, Dong X. Wettability effect on nanoconfined water flow. Proc Natl Acad Sci USA 2017;114:3358-63.
DOI PubMed
176. Yaghi OM, Prevot MS, Hanikel N, Kapustin EA, Fathieh F. Active atmospheric moisture harvester. Available from:
https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2020036905 [Last accessed on 20 Feb 2023].
177. Yaghi OM, Fathieh F, Kalmutzki MJ, Kapustin EA. Atmospheric moisture harvester. Available from:
https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2019152962&_cid=JP1-LEC9J1-00905-1 [Last accessed on 20 Feb
2023].
178. Kim H, Yang S, Rao SR, et al. Sorption-based atmospheric water harvesting device. Available from:
https://patentscope2.wipo.int/search/en/detail.jsf?docId=US249457722&_cid=JP1-LEC9LR-04379-1 [Last accessed on 20 Feb
2023].