Page 39 - Read Online
P. 39

Page 32 of 35                       Zhang et al. Chem Synth 2023;3:10  https://dx.doi.org/10.20517/cs.2022.40

               68.       Wagner JC, Hunter KM, Paesani F, Xiong W. Water capture mechanisms at zeolitic imidazolate framework interfaces. J Am Chem
                    Soc 2021;143:21189-94.  DOI  PubMed
               69.       Choi HJ, Dincă M, Dailly A, Long JR. Hydrogenstorage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-
                    benzenedipyrazolate. Energy Environ Sci 2010;3:117-23.  DOI
               70.       Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO  capture.
                                                                                                    2
                    Science 2008;319:939-43.  DOI  PubMed
               71.       Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci
                    USA 2006;103:10186-91.  DOI  PubMed
               72.       Tian D, Xu J, Xie ZJ, et al. The first example of hetero-triple-walled metal-organic frameworks with high chemical stability
                    constructed via flexible integration of mixed molecular building blocks. Adv Sci 2016;3:1500283.  DOI  PubMed
               73.       Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface
                    area. Science 2005;309:2040-2.  DOI  PubMed
               74.       Chen Z, Li P, Zhang X, et al. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption. J
                    Am Chem Soc 2019;141:2900-5.  DOI  PubMed
               75.       Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D. Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev
                    2014;43:5594-617.  DOI  PubMed
               76.       Liu X, Wang X, Kapteijn F. Water and metal-organic frameworks: from interaction toward utilization. Chem Rev 2020;120:8303-77.
                    DOI  PubMed
               77.       Dietzel PDC, Johnsen RE, Blom R, Fjellvåg H. Structural changes and coordinatively unsaturated metal atoms on dehydration of
                    honeycomb analogous microporous metal-organic frameworks. Chem Eur J 2008;14:2389-97.  DOI  PubMed
               78.       Ko N, Choi PG, Hong J, et al. Tailoring the water adsorption properties of MIL-101 metal-organic frameworks by partial
                    functionalization. J Mater Chem A 2015;3:2057-64.  DOI
               79.       Hanikel N, Pei X, Chheda S, et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water
                    harvesting. Science 2021;374:454-9.  DOI  PubMed
               80.       Akiyama G, Matsuda R, Sato H, Hori A, Takata M, Kitagawa S. Effect of functional groups in MIL-101 on water sorption behavior.
                    Micropor Mesopor Mater 2012;157:89-93.  DOI
               81.       Deria P, Chung YG, Snurr RQ, Hupp JT, Farha OK. Water stabilization of Zr6-based metal-organic frameworks via solvent-assisted
                    ligand incorporation. Chem Sci 2015;6:5172-6.  DOI  PubMed
               82.       Laha S, Maji TK. Binary/Ternary MOF nanocomposites for multi-environment indoor atmospheric water harvesting. Adv Funct
                    Mater 2022;32:2203093.  DOI
               83.       Xu J, Li T, Chao J, et al. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by
                    hygroscopic salt. Angew Chem Int Ed 2020;59:5202-10.  DOI  PubMed
               84.       Hu Y, Fang Z, Wan X, et al. Carbon nanotubes decorated hollow metal-organic frameworks for efficient solar-driven atmospheric
                    water harvesting. Chem Eng J 2022;430:133086.  DOI
               85.       Abtab SMT, Alezi D, Bhatt PM, et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in
                    adsorbed water. Chem 2018;4:94-105.  DOI
               86.       Wu Q, Su W, Li Q, Tao Y, Li H. Enabling continuous and improved solar-driven atmospheric water harvesting with Ti C -
                                                                                                       3
                                                                                                         2
                    incorporated metal-organic framework monoliths. ACS Appl Mater Interf 2021;13:38906-15.  DOI  PubMed
               87.       Rieth AJ, Wright AM, Skorupskii G, Mancuso JL. Hendon CH, Dincă M. Record-setting sorbents for reversible water uptake by
                    systematic anion exchanges in metal-organic frameworks. J Am Chem Soc 2019;141:13858-66.  DOI  PubMed
               88.       Karmakar A, Mileo PG, Bok I, et al. Thermo-responsive MOF/polymer composites for temperature-mediated water capture and
                    release. Angew Chem Int Ed 2020;59:11003-9.  DOI  PubMed
               89.       Garzón-Tovar L, Pérez-Carvajal J, Imaz I, Maspoch D. Composite salt in porous metal-organic frameworks for adsorption heat
                    transformation. Adv Funct Mater 2017;27:1606424.  DOI
               90.       Permyakova A, Wang S, Courbon E, et al. Design of salt-metal organic framework composites for seasonal heat storage applications.
                    J Mater Chem A 2017;5:12889-98.  DOI
               91.       Hanikel N, Prévot MS, Fathieh F, et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent
                    Sci 2019;5:1699-706.  DOI  PubMed
               92.       Wang L, Wang K, An HT, Huang H, Xie LH, Li JR. A hydrolytically stable Cu(II)-based metal-organic framework with easily
                    accessible ligands for water harvesting. ACS Appl Mater Interf 2021;13:49509-18.  DOI  PubMed
               93.       Tao Y, Wu Q, Huang C, et al. Sandwich-structured carbon paper/metal-organic framework monoliths for flexible solar-powered
                    atmospheric water harvesting on demand. ACS Appl Mater Interf 2022;14:10966-75.  DOI  PubMed
               94.       Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev 2020;120:8814-933.  DOI
                    PubMed
               95.       Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science
                    2005;310:1166-70.  DOI  PubMed
               96.       Freund R, Zaremba O, Arnauts G, et al. The current status of MOF and COF applications. Angew Chem Int Ed 2021;60:23975-4001.
                    DOI  PubMed
               97.       Das S, Heasman P, Ben T, Qiu S. Porous organic materials: strategic design and structure-function correlation. Chem Rev
   34   35   36   37   38   39   40   41   42   43   44