Page 39 - Read Online
P. 39
Page 32 of 35 Zhang et al. Chem Synth 2023;3:10 https://dx.doi.org/10.20517/cs.2022.40
68. Wagner JC, Hunter KM, Paesani F, Xiong W. Water capture mechanisms at zeolitic imidazolate framework interfaces. J Am Chem
Soc 2021;143:21189-94. DOI PubMed
69. Choi HJ, Dincă M, Dailly A, Long JR. Hydrogenstorage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-
benzenedipyrazolate. Energy Environ Sci 2010;3:117-23. DOI
70. Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO capture.
2
Science 2008;319:939-43. DOI PubMed
71. Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci
USA 2006;103:10186-91. DOI PubMed
72. Tian D, Xu J, Xie ZJ, et al. The first example of hetero-triple-walled metal-organic frameworks with high chemical stability
constructed via flexible integration of mixed molecular building blocks. Adv Sci 2016;3:1500283. DOI PubMed
73. Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface
area. Science 2005;309:2040-2. DOI PubMed
74. Chen Z, Li P, Zhang X, et al. Reticular access to highly porous acs-MOFs with rigid trigonal prismatic linkers for water sorption. J
Am Chem Soc 2019;141:2900-5. DOI PubMed
75. Canivet J, Fateeva A, Guo Y, Coasne B, Farrusseng D. Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev
2014;43:5594-617. DOI PubMed
76. Liu X, Wang X, Kapteijn F. Water and metal-organic frameworks: from interaction toward utilization. Chem Rev 2020;120:8303-77.
DOI PubMed
77. Dietzel PDC, Johnsen RE, Blom R, Fjellvåg H. Structural changes and coordinatively unsaturated metal atoms on dehydration of
honeycomb analogous microporous metal-organic frameworks. Chem Eur J 2008;14:2389-97. DOI PubMed
78. Ko N, Choi PG, Hong J, et al. Tailoring the water adsorption properties of MIL-101 metal-organic frameworks by partial
functionalization. J Mater Chem A 2015;3:2057-64. DOI
79. Hanikel N, Pei X, Chheda S, et al. Evolution of water structures in metal-organic frameworks for improved atmospheric water
harvesting. Science 2021;374:454-9. DOI PubMed
80. Akiyama G, Matsuda R, Sato H, Hori A, Takata M, Kitagawa S. Effect of functional groups in MIL-101 on water sorption behavior.
Micropor Mesopor Mater 2012;157:89-93. DOI
81. Deria P, Chung YG, Snurr RQ, Hupp JT, Farha OK. Water stabilization of Zr6-based metal-organic frameworks via solvent-assisted
ligand incorporation. Chem Sci 2015;6:5172-6. DOI PubMed
82. Laha S, Maji TK. Binary/Ternary MOF nanocomposites for multi-environment indoor atmospheric water harvesting. Adv Funct
Mater 2022;32:2203093. DOI
83. Xu J, Li T, Chao J, et al. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by
hygroscopic salt. Angew Chem Int Ed 2020;59:5202-10. DOI PubMed
84. Hu Y, Fang Z, Wan X, et al. Carbon nanotubes decorated hollow metal-organic frameworks for efficient solar-driven atmospheric
water harvesting. Chem Eng J 2022;430:133086. DOI
85. Abtab SMT, Alezi D, Bhatt PM, et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in
adsorbed water. Chem 2018;4:94-105. DOI
86. Wu Q, Su W, Li Q, Tao Y, Li H. Enabling continuous and improved solar-driven atmospheric water harvesting with Ti C -
3
2
incorporated metal-organic framework monoliths. ACS Appl Mater Interf 2021;13:38906-15. DOI PubMed
87. Rieth AJ, Wright AM, Skorupskii G, Mancuso JL. Hendon CH, Dincă M. Record-setting sorbents for reversible water uptake by
systematic anion exchanges in metal-organic frameworks. J Am Chem Soc 2019;141:13858-66. DOI PubMed
88. Karmakar A, Mileo PG, Bok I, et al. Thermo-responsive MOF/polymer composites for temperature-mediated water capture and
release. Angew Chem Int Ed 2020;59:11003-9. DOI PubMed
89. Garzón-Tovar L, Pérez-Carvajal J, Imaz I, Maspoch D. Composite salt in porous metal-organic frameworks for adsorption heat
transformation. Adv Funct Mater 2017;27:1606424. DOI
90. Permyakova A, Wang S, Courbon E, et al. Design of salt-metal organic framework composites for seasonal heat storage applications.
J Mater Chem A 2017;5:12889-98. DOI
91. Hanikel N, Prévot MS, Fathieh F, et al. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent
Sci 2019;5:1699-706. DOI PubMed
92. Wang L, Wang K, An HT, Huang H, Xie LH, Li JR. A hydrolytically stable Cu(II)-based metal-organic framework with easily
accessible ligands for water harvesting. ACS Appl Mater Interf 2021;13:49509-18. DOI PubMed
93. Tao Y, Wu Q, Huang C, et al. Sandwich-structured carbon paper/metal-organic framework monoliths for flexible solar-powered
atmospheric water harvesting on demand. ACS Appl Mater Interf 2022;14:10966-75. DOI PubMed
94. Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev 2020;120:8814-933. DOI
PubMed
95. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science
2005;310:1166-70. DOI PubMed
96. Freund R, Zaremba O, Arnauts G, et al. The current status of MOF and COF applications. Angew Chem Int Ed 2021;60:23975-4001.
DOI PubMed
97. Das S, Heasman P, Ben T, Qiu S. Porous organic materials: strategic design and structure-function correlation. Chem Rev