Page 37 - Read Online
P. 37

Page 30 of 35                       Zhang et al. Chem Synth 2023;3:10  https://dx.doi.org/10.20517/cs.2022.40

               7.       Awual MR. Novel ligand functionalized composite material for efficient copper(II) capturing from wastewater sample. Composites
                    Part B 2019;172:387-96.  DOI
               8.       Awual MR. Mesoporous composite material for efficient lead(II) detection and removal from aqueous media. J. Environ Chem Eng
                    2019;7:103124.  DOI
               9.       Salman MS, Znad H, Hasan N, MM. Optimization of innovative composite sensor for Pb(II) detection and capturing from water
                    samples. Microchem J 2021;160:105765.  DOI
               10.       Shahat A, Kubra KT, Salman MS, Hasan MN, Hasan M. Novel solid-state sensor material for efficient cadmium(II) detection and
                    capturing from wastewater. Microchem J 2021;164:105967.  DOI
               11.       Awual MR. A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem Eng J
                    2015;266:368-75.  DOI
               12.       Lord J, Thomas A, Treat N, et al. Global potential for harvesting drinking water from air using solar energy. Nature 2021;598:611-7.
                    DOI  PubMed
               13.       Hanikel N, Prévot MS, Yaghi OM. MOF water harvesters. Nat Nanotechnol 2020;15:348-55.  DOI  PubMed
               14.       Dods MN, Weston SC, Long JR. Prospects for simultaneously capturing carbon dioxide and harvesting water from air. Adv Mater
                    2022;34:2204277.  DOI  PubMed
               15.       Lu H, Shi W, Guo Y, Guan W, Lei C, Yu G. Materials engineering for atmospheric water harvesting: progress and perspectives. Adv
                    Mater 2022;34:2110079.  DOI  PubMed
               16.       Chen Z, Song S, Ma B, et al. Recent progress on sorption/desorption-based atmospheric water harvesting powered by solar energy.
                    Energy Mater Sol Cells 2021;230:111233.  DOI
               17.       Bagheri F. Performance investigation of atmospheric water harvesting systems. Water Resour Ind 2018;20:23-8.  DOI
               18.       Salehi AA, Ghannadi-Maragheh M, Torab-Mostaedi M, Torkaman R, Asadollahzadeh M. A review on the water-energy nexus for
                    drinking water production from humid air. Renew Sustain Energy Rev 2020;120:109627.  DOI
               19.       Furukawa H, Gándara F, Zhang Y-B, et al. Water adsorption in porous metal-organic frameworks and related materials. J Am Chem
                    Soc 2014;136:4369-81.  DOI  PubMed
               20.       Xu W, Yaghi OM. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent Sci 2020;6:1348-54.  DOI
                    PubMed
               21.       Byun Y, Je SH, Talapaneni SN, Coskun A. Advances in porous organic polymers for efficient water capture. Chem Eur J
                    2019;25:10262-83.  DOI  PubMed
               22.       Shi W, Guan W, Lei C, Yu G. Sorbents for atmospheric water harvesting: from design principles to applications. Angew Chem Int Ed
                    2022;61:e202211267.  DOI  PubMed
               23.       Metrane A, Delhali A, Ouikhalfan M, Assen AH, Belmabkhout Y. Water vapor adsorption by porous materials: from chemistry to
                    practical applications. J Chem Eng Data 2022;67:1617-53.  DOI
               24.       Shafeian N, Ranjbar AA, Gorji TB. Progress in atmospheric water generation systems: a review. Renew Sust Energ Rev
                    2022;161:112325.  DOI
               25.       Li X, Li Z, Xia Q, Xi H. Effects of pore sizes of porous silica gels on desorption activation energy of water vapour. Appl Therm Eng
                    2007;27:869-76.  DOI
               26.       Fathieh F, Kalmutzki MJ, Kapustin EA, Waller PJ, Yang J, Yaghi OM. Practical water production from desert air. Sci Adv
                    2018;4:eaat3198.  DOI  PubMed
               27.       Nguyen HL, Hanikel N, Lyle SJ, Zhu C, Proserpio DM, Yaghi OM. A porous covalent organic framework with voided square grid
                    topology for atmospheric water harvesting. J Am Chem Soc 2020;142:2218-21.  DOI  PubMed
               28.       Yilmaz G, Meng FL, Lu W, et al. Autonomous atmospheric water seeping MOF matrix. Sci Adv 2020;6:eabc8605.  DOI  PubMed
               29.       Zhang S, Fu J, Das S, Ye K, Zhu W, Ben T. Crystalline porous organic salt for ultrarapid adsorption/desorption-based atmospheric
                    water harvesting by dual hydrogen bond system. Angew Chem Int Ed 2022;61:e202208660.  DOI  PubMed
               30.       Tang S-Y, Wang Y-S, Yuan Y-F, et al. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-
                    formaldehyde resin for atmospheric water harvesting. New Carbon Mater 2022;37:237-44.  DOI
               31.       Bulang WG. Solar water recovery from the air. Solar Energy Int Prog 1938;3:1526-45.  DOI
               32.       Aristov TI, Tokarev MM, Gordeeva LG, Snytnikov VN, Parmon VN. New composite sorbents for solar-driven technology of fresh
                    water production from the atmosphere. Solar Energy 1999;66:165-8.  DOI
               33.       Ji JG, Wang RZ, Li LX. New composite adsorbent for solar-driven fresh water production from the atmosphere. Desalination
                    2007;212:176-82.  DOI
               34.       Kim H, Yang S, Rao R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science
                    2017;356:430-4.  DOI  PubMed
               35.       Kallenberger PA, Fröba M. Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix. Commun Chem
                    2018;28:1.  DOI
               36.       Li R, Shi Y, Alsaedi M, Wu W, Shi L, Wang P. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-
                    driven atmospheric water generator. Environ Sci Technol 2018;52:11367-77.  DOI  PubMed
               37.       Matsumoto K, Sakikawa N, Miyata T. Thermo-responsive gels that absorb moisture and ooze water. Nat Commun 2018;9:2315.  DOI
                    PubMed
               38.       Lu Z, Wang R, Xia Z, Experimental analysis of an adsorption air conditioning with micro-porous silica gel-water.
   32   33   34   35   36   37   38   39   40   41   42