Page 101 - Read Online
P. 101

Page 28 of 33                         Mao et al. Chem Synth 2023;3:26  https://dx.doi.org/10.20517/cs.2022.41

               31.       Staller CM, Gibbs SL, Saez Cabezas CA, Milliron DJ. Quantitative analysis of extinction coefficients of Tin-doped indium oxide
                    nanocrystal ensembles. Nano Lett 2019;19:8149-54.  DOI  PubMed
               32.       Tandon B, Agrawal A, Heo S, Milliron DJ. Competition between depletion effects and coupling in the plasmon modulation of doped
                    metal oxide nanocrystals. Nano Lett 2019;19:2012-9.  DOI  PubMed
               33.       Zandi O, Agrawal A, Shearer AB, et al. Impacts of surface depletion on the plasmonic properties of doped semiconductor
                    nanocrystals. Nat Mater 2018;17:710-7.  DOI
               34.       Zheng JW, Lebedev K, Wu SO, et al. High loading of transition metal single atoms on chalcogenide catalysts. J Am Chem Soc
                    2021;143:7979-90.10.1021/jacs.1c01097.  DOI
               35.       Li XP, Huang RJ, Chen C, Li T, Gao YJ. Simultaneous conduction and valence band regulation of indium-based quantum dots for
                    efficient H  photogeneration. Nanomaterials 2021;11:1115.  DOI  PubMed  PMC
                           2
               36.       Liu X, Swihart MT. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic
                    nanomaterials. Chem Soc Rev 2014;43:3908-20.  DOI  PubMed
               37.       Zimmer D, Ruiz-fuertes J, Morgenroth W, et al. Pressure-induced changes of the structure and properties of monoclinic α -chalcocite
                    Cu S. Phys Rev B 2018:97.  DOI
                      2
               38.       Barman SK, Huda MN. Stability enhancement of Cu S against Cu vacancy formation by Ag alloying. J Phys Condens Matter
                                                        2
                    2018;30:165701.  DOI  PubMed
               39.       Zimmer D, Ruiz-fuertes J, Bayarjargal L, et al. Phase transition of tetragonal copper sulfide Cu S at low temperatures. Phys Rev B
                                                                                   2
                    2017:96.  DOI
               40.       Khatri P, Huda MN. Prediction of a new phase of CuxS near stoichiometric composition. Int J Photoenergy 2015;2015:1-7.  DOI
               41.       Saona LA, Campo-Giraldo JL, Anziani-Ostuni G, et al. Cysteine-mediated green synthesis of copper sulphide nanoparticles:
                    biocompatibility studies and characterization as counter electrodes. Nanomaterials 2022;12:3194.  DOI  PubMed  PMC
               42.       Wang J, Zhuo K, Gao J, Landman U, Chou M. Mechanism for anisotropic diffusion of liquid-like Cu atoms in hexagonal β-Cu S.
                                                                                                        2
                    Phys Rev Materials 2021:5.  DOI
               43.       Muddassir Y, Tahir S, Ali A, et al. Morphology-dependent thermoelectric properties of mixed phases of copper sulfide (Cu S)
                                                                                                       2-x
                    nanostructures synthesized by hydrothermal method. Appl Phys A 2021:127.  DOI
               44.       Iqbal S, Bahadur A, Anwer S, et al. Effect of temperature and reaction time on the morphology of l-cysteine surface capped
                    chalcocite (Cu S) snowflakes dendrites nanoleaves and photodegradation study of methyl orange dye under visible light. Colloids
                             2
                    Surf A Physicochem Eng Asp 2020;601:124984.  DOI
               45.       Asadov YG, Aliyev YI, Dashdemirov AO, Jabarov SH, Naghiyev TG. High-temperature X-ray diffraction study of Ag S-Cu S
                                                                                                     2
                                                                                                        2
                    system. Mod Phys Lett B 2020;34:2150018.  DOI
               46.       Maskaeva LN, Glukhova IA, Markov VF, Tulenin SS, Voronin VI. Nanostructured copper(I) sulfide films: Synthesis, composition,
                    morphology, and structure. Russ J Appl Chem 2016;89:1939-47.  DOI
               47.       Yarur Villanueva F, Green PB, Qiu C, et al. Binary Cu S templates direct the formation of quaternary Cu ZnSnS  (Kesterite,
                                                                                             2
                                                                                                  4
                                                          2-x
                    Wurtzite) Nanocrystals. ACS Nano 2021;15:18085-99.  DOI  PubMed
               48.       Zhu D, Ye H, Liu Z, et al. Seed-mediated growth of heterostructured Cu 1.94 S-MS (M = Zn, Cd, Mn) and alloyed CuNS  (N = In, Ga)
                                                                                                 2
                    nanocrystals for use in structure- and composition-dependent photocatalytic hydrogen evolution. Nanoscale 2020;12:6111-20.  DOI
               49.       Liu W, Shi X, Gao H, et al. Kinetic condition driven phase and vacancy enhancing thermoelectric performance of low-cost and eco-
                    friendly Cu S. J Mater Chem C 2019;7:5366-73.  DOI
                           2−x
               50.       Chen L, Hu H, Chen R, Li Y, Li G. One-pot synthesis of roxbyite Cu 1.81 S triangular nanoplates relevant to plasmonic sensor. Mater
                    Today Commun 2019;18:136-9.  DOI
               51.       Yamamoto K, Kashida S. X-ray study of the cation distribution in Cu Se, Cu Se and Cu S; analysis by the maximum entropy
                                                                                1.8
                                                                        1.8
                                                                   2
                    method. Solid State Ion 1991;48:241-8.  DOI
               52.       Villa A, Telkhozhayeva M, Marangi F, et al. Optical Properties and Ultrafast Near-Infrared Localized Surface Plasmon Dynamics in
                    Naturally p-Type Digenite Films. Adv Opt Mater 2023;11:2201488.  DOI
               53.       Zhang Y, Feng J, Ge Z. Enhanced thermoelectric performance of Cu S via lattice softening. J Chem Eng 2022;428:131153.  DOI
                                                                1.8
               54.       Zhang Y, Xing C, Liu Y, et al. Doping-mediated stabilization of copper vacancies to promote thermoelectric properties of Cu S.
                                                                                                       2-x
                    Nano Energy 2021;85:105991.  DOI
               55.       Kuterbekov K, Balapanov M, Kubenova M, et al. Thermal properties of nanocrystalline copper sulfides K Cu 1.85 S (0 < x < 0.05). Lett
                                                                                        x
                    Mater 2022;12:191-6.  DOI
               56.       Janickis V, Petrasauskiene N. Modification of polyamide films by semiconductive and conductive copper selenide-copper sulfide
                    layers. Available from: http://mokslozurnalai.lmaleidykla.lt/publ/0235-7216/2017/4/214%E2%80%93225pdf.pdf. [Last accessed on
                    11 May 2023].  DOI
               57.       Li Cheng, Li D, Yu W, et al. A novel strategy to fabricate CuS, Cu S , and Cu Se nanofibers via inheriting the morphology of
                                                                 7.2 4
                                                                         2-x
                    electrospun CuO nanofibers. Russ J Phys Chem 2019;93:730-5.  DOI
               58.       Tarachand, Hussain S, Lalla NP, et al. Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol
                    method. Phys Chem Chem Phys 2018;20:5926-35.  DOI
               59.       Yao J, Deng B, Ellis DE, Ibers JA. Syntheses, structures, physical properties, and electronic structures of KLn CuS  (Ln = Y, Nd, Sm,
                                                                                          2
                                                                                              4
                    Tb, Ho) and K Ln Cu S  (Ln=Dy, Ho). J Solid State Chem 2003;176:5-12.  DOI
                                  4 9
                                4
                             2
               60.       Roo J. Chemical Considerations for Colloidal Nanocrystal Synthesis. Chem Mater 2022;34:5766-79.  DOI
   96   97   98   99   100   101   102   103   104   105   106