Page 102 - Read Online
P. 102

Mao et al. Chem Synth 2023;3:26  https://dx.doi.org/10.20517/cs.2022.41         Page 29 of 33

               61.       Rachkov AG, Schimpf AM. Colloidal Synthesis of Tunable Copper Phosphide Nanocrystals. Chem Mater 2021;33:1394-406.  DOI
               62.       Doan-Nguyen TP, Jiang S, Koynov K, Landfester K, Crespy D. Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening.
                    Angew Chem Int Ed Engl 2021;60:18094-102.  DOI  PubMed
               63.       Wu J, Zhang Z, Fang Y, et al. Plasmon-enhanced photocatalytic cumulative effect on 2D semiconductor heterojunctions towards
                    highly-efficient visible-light-driven solar-to-fuels conversion. J Chem Eng 2022;437:135308.  DOI
               64.       Wang W, Fang J, Huang X. Different behaviors between interband and intraband transitions generated hot carriers on g-C N /Au for
                                                                                                   3
                                                                                                     4
                    photocatalytic H  production. Appl Sur Sci 2020;513:145830.  DOI
                               2
               65.       Nishi H, Tatsuma T. Electrochemical and Photoelectrochemical Applications of Plasmonic Metal and Compound Nanoparticles.
                    Electrochemistry 2019;87:321-7.  DOI
               66.       Yan C, Tian Q, Yang S. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion
                    efficiency for the photothermal ablation of cancer cells. RSC Adv 2017;7:37887-97.  DOI
               67.       Kriegel I, Jiang C, Rodríguez-Fernández J, et al. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals.
                    J Am Chem Soc 2012;134:1583-90.  DOI
               68.       Chen L, Sakamoto M, Haruta M, et al. Tin Ion Directed Morphology Evolution of Copper Sulfide Nanoparticles and Tuning of Their
                    Plasmonic Properties via Phase Conversion. Langmuir 2016;32:7582-7.  DOI
               69.       Bekenstein Y, Vinokurov K, Keren-Zur S, et al. Thermal doping by vacancy formation in copper sulfide nanocrystal arrays. Nano
                    Lett 2014;14:1349-53.  DOI
               70.       Ou W, Zou Y, Wang K, et al. Active manipulation of NIR plasmonics: the case of Cu Se through electrochemistry. J Phys Chem
                                                                             2-x
                    Lett 2018;9:274-80.  DOI  PubMed
               71.       Schimpf AM, Knowles KE, Carroll GM, Gamelin DR. Electronic doping and redox-potential tuning in colloidal semiconductor
                    nanocrystals. Acc Chem Res 2015;48:1929-37.  DOI  PubMed
               72.       Jain PK, Manthiram K, Engel JH, White SL, Faucheaux JA, Alivisatos AP. Doped nanocrystals as plasmonic probes of redox
                    chemistry. Angew Chem Int Ed Engl 2013;52:13671-5.  DOI  PubMed
               73.       Alam R, Labine M, Karwacki CJ, Kamat PV. Modulation of Cu S nanocrystal plasmon resonance through reversible photoinduced
                                                             2-x
                    electron transfer. ACS Nano 2016;10:2880-6.  DOI  PubMed
               74.       Liu K, Liu K, Liu J, et al. Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale 2020;12:2902-13.
                    DOI
               75.       Li J, Zhang Y, Zhang J, et al. Chemical vapor deposition of quaternary 2D BiCuSeO p-type semiconductor with intrinsic degeneracy.
                    Adv Mater 2022;34:e2207796.  DOI  PubMed
               76.       Wang Y, Zhang A, Shao Z, et al. High-performance se-based photoelectrochemical photodetectors via in situ grown microrod arrays.
                    Adv Opt Mater 2022;10:2201926.  DOI
               77.       Prominski A, Shi J, Li P, et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat Mater
                    2022;21:647-55.  DOI
               78.       Zhu D, Tang A, Peng L, Liu Z, Yang C, Teng F. Tuning the plasmonic resonance of Cu S nanocrystals: effects of the crystal phase,
                                                                             2-x
                    morphology and surface ligands. J Mater Chem C 2016;4:4880-8.  DOI
               79.       Liu Y, Liu M, Swihart MT. Reversible crystal phase interconversion between covellite cus and high chalcocite Cu S nanocrystals.
                                                                                               2
                    Chem Mater 2017;29:4783-91.  DOI
               80.       Li W, Zamani R, Rivera Gil P, et al. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and
                    photothermal agents. J Am Chem Soc 2013;135:7098-101.  DOI
               81.       De Trizio L, Li H, Casu A, et al. Sn cation valency dependence in cation exchange reactions involving Cu Se nanocrystals. J Am
                                                                                          2-x
                    Chem Soc 2014;136:16277-84.  DOI  PubMed  PMC
               82.       Dorfs D, Härtling T, Miszta K, et al. Reversible tunability of the near-infrared valence band plasmon resonance in Cu Se
                                                                                                       2-x
                    nanocrystals. J Am Chem Soc 2011;133:11175-80.  DOI  PubMed
               83.       Chen L, Sakamoto M, Sato R, Teranishi T. Determination of a localized surface plasmon resonance mode of Cu S  nanodisks by
                                                                                               7 4
                    plasmon coupling. Faraday Discuss 2015;181:355-64.  DOI  PubMed
               84.       Ji M, Xu M, Zhang W, et al. Structurally well-defined Au@Cu S core-shell nanocrystals for improved cancer treatment based on
                                                             2-x
                    enhanced photothermal efficiency. Adv Mater 2016;28:3094-101.  DOI  PubMed
               85.       Zhu D, Liu M, Liu X, Liu Y, Prasad PN, Swihart MT. Au-Cu Se heterogeneous nanocrystals for efficient photothermal heating for
                                                            2-x
                    cancer therapy. J Mater Chem B 2017;5:4934-42.  DOI
               86.       Ma L, Liang S, Liu X, Yang D, Zhou L, Wang Q. Synthesis of dumbbell-like gold-metal sulfide core-shell nanorods with largely
                    enhanced transverse plasmon resonance in visible region and efficiently improved photocatalytic activity. Adv Funct Mater
                    2015;25:898-904.  DOI
               87.       Liu X, Lee C, Law WC, et al. Au-Cu Se heterodimer nanoparticles with broad localized surface plasmon resonance as contrast
                                             2-x
                    agents for deep tissue imaging. Nano Lett 2013;13:4333-9.  DOI  PubMed
               88.       Liu JN, Bu W, Shi J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Rev
                    2017;117:6160-224.  DOI  PubMed
               89.       Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal
                    therapeutic agent for in vivo cancer therapy. Adv Mater 2013;25:1353-9.  DOI
               90.       Tian Q, Tang M, Sun Y, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for
   97   98   99   100   101   102   103   104   105   106   107