Page 104 - Read Online
P. 104

Mao et al. Chem Synth 2023;3:26  https://dx.doi.org/10.20517/cs.2022.41         Page 31 of 33

                    radiochemical stability and controllable Cerenkov luminescence. ACS Nano 2015;9:488-95.  DOI  PubMed  PMC
                                                                64
               120.      Zhou M, Zhang R, Huang M, et al. A chelator-free multifunctional [ Cu]CuS nanoparticle platform for simultaneous micro-PET/CT
                    imaging and photothermal ablation therapy. J Am Chem Soc 2010;132:15351-8.  DOI  PubMed  PMC
               121.      Quintana C, Cifuentes MP, Humphrey MG. Transition metal complex/gold nanoparticle hybrid materials. Chem Soc Rev
                    2020;49:2316-41.  DOI  PubMed
               122.      Shin TH, Choi Y, Kim S, Cheon J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev
                    2015;44:4501-16.  DOI
               123.      Chen Y, Liu X, Wu R, Cui J, Hu G, Wang L. Dual active center-assembled Cu S -Co Ni S  heterodimers: coherent interface
                                                                               9-x
                                                                                  x 8
                                                                         31 16
                    engineering induces multihole accumulation for light-enhanced electrocatalytic oxygen evolution. ACS Appl Mater Interfaces
                    2021;13:20094-104.  DOI  PubMed
               124.      Xu J, Cui J, Guo C, et al. Ultrasmall Cu S  @MoS  Hetero-nanoframes with abundant active edge sites for ultrahigh-performance
                                                      2
                                              7 4
                    hydrogen evolution. Angew Chem Int Ed Engl 2016;55:6502-5.  DOI  PubMed
               125.      Zhu H, Zhou Y, Wang Y, Xu S, James TD, Wang L. Stepwise-enhanced tumor targeting of near-infrared emissive Au Nanoclusters
                    with high quantum yields and long-term stability. Anal Chem 2022;94:13189-96.  DOI  PubMed  PMC
               126.      Shi H, Sun Y, Yan R, et al. Magnetic semiconductor Gd-doping CuS nanoparticles as activatable nanoprobes for bimodal imaging
                    and targeted photothermal therapy of gastric tumors. Nano Lett 2019;19:937-47.  DOI
               127.      Han Y, Wang T, Liu H, et al. The release and detection of copper ions from ultrasmall theranostic Cu Se nanoparticles. Nanoscale
                                                                                      2-x
                    2019;11:11819-29.  DOI  PubMed
               128.      Zhang Y, Fang J, Ye S, et al. A hydrogen sulphide-responsive and depleting nanoplatform for cancer photodynamic therapy. Nat
                    Commun 2022;13:1685.  DOI  PubMed  PMC
               129.      Cui C, Li J, Fang J, et al. Building multipurpose nano-toolkit by rationally decorating NIR-II fluorophore to meet the needs of tumor
                    diagnosis and treatment. Chin Chem Lett 2022;33:3478-83.  DOI
               130.      Zhao M, Ding J, Mao Q, et al. A novel α β  integrin-targeted NIR-II nanoprobe for multimodal imaging-guided photothermal therapy
                                              v 3
                    of tumors in vivo. Nanoscale 2020;12:6953-8.  DOI
               131.      Yun B, Zhu H, Yuan J, Sun Q, Li Z. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. J Mater Chem B
                    2020;8:4778-812.  DOI
               132.      Sarma A, Gutowski O, Seeck O, et al. Photothermal synthesis of copper sulfide nanowires for direct lithography of chalcogenides on
                    a chip. ACS Appl Nano Mater 2022;5:4367-75.  DOI
               133.      Li Y, Lu W, Huang Q, Huang M, Li C, Chen W. Copper sulfide nanoparticles for photothermal ablation of tumor cells.
                    Nanomedicine 2010;5:1161-71.  DOI
               134.      Zhou M, Li J, Liang S, Sood AK, Liang D, Li C. CuS nanodots with ultrahigh efficient renal clearance for positron emission
                    tomography imaging and image-guided photothermal therapy. ACS Nano 2015;9:7085-96.  DOI  PubMed  PMC
               135.      Zhang S, Sun C, Zeng J, et al. Ambient aqueous synthesis of ultrasmall PEGylated Cu Se nanoparticles as a multifunctional
                                                                               2-x
                    theranostic agent for multimodal imaging guided photothermal therapy of cancer. Adv Mater 2016;28:8927-36.  DOI  PubMed
               136.      Bao J, Wang Y, Li C, et al. Gold-promoting-satellite to boost photothermal conversion efficiency of Cu Se for triple-negative breast
                                                                                       2-x
                    cancer targeting therapy. Materials Today Nano 2022;18:100211.  DOI
                                                19
               137.      Chen H, Song M, Tang J, et al. Ultrahigh  F loaded Cu 1.75 S nanoprobes for simultaneous (19)F magnetic resonance imaging and
                    photothermal therapy. ACS Nano 2016;10:1355-62.  DOI  PubMed  PMC
                                                                19
               138.      Guo C, Yan Y, Xu S, Wang L. In situ fabrication of nanoprobes for  F magnetic resonance and photoacoustic imaging-guided tumor
                    therapy. Anal Chem 2022;94:5317-24.  DOI  PubMed
               139.      Huang X, Zhang W, Guan G, Song G, Zou R, Hu J. Design and functionalization of the NIR-responsive photothermal semiconductor
                    nanomaterials for cancer theranostics. Acc Chem Res 2017;50:2529-38.  DOI
               140.      Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics for the US Hispanic/Latino population, 2021. CA Cancer J Clin
                    2021;71:7-33.  DOI  PubMed
               141.      Cho NH, Cheong TC, Min JH, et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat
                    Nanotechnol 2011;6:675-82.  DOI  PubMed
               142.      Li J, Ge Z, Toh K, et al. Enzymatically transformable polymersome-based nanotherapeutics to eliminate minimal relapsable cancer.
                    Adv Mater 2021;33:e2105254.  DOI  PubMed
               143.      Izci M, Maksoudian C, Manshian BB, Soenen SJ. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors.
                    Chem Rev 2021;121:1746-803.  DOI  PubMed  PMC
               144.      Ding J, Mao Q, Zhao M, et al. Protein sulfenic acid-mediated anchoring of gold nanoparticles for enhanced CT imaging and
                    radiotherapy of tumors in vivo. Nanoscale 2020;12:22963-9.  DOI  PubMed
               145.      Mao Q, Fang J, Wang A, et al. Aggregation of gold nanoparticles triggered by hydrogen peroxide-initiated chemiluminescence for
                    activated tumor theranostics. Angew Chem Int Ed Engl 2021;60:23805-11.  DOI  PubMed
               146.      Fang J, Zhao Y, Wang A, et al. In vivo quantitative assessment of a radiation dose based on ratiometric photoacoustic imaging of
                    tumor apoptosis. Anal Chem 2022;94:5149-58.  DOI
               147.      Ye S, Cui C, Cheng X, et al. Red light-initiated cross-linking of NIR probes to cytoplasmic RNA: an innovative strategy for
                    prolonged imaging and unexpected tumor suppression. J Am Chem Soc 2020;142:21502-12.  DOI
               148.      Cui J, Jiang R, Lu W, Xu S, Wang L. Plasmon-enhanced photoelectrical hydrogen evolution on monolayer MoS  decorated Cu 1.75 S-
                                                                                             2
   99   100   101   102   103   104   105   106   107   108   109