Page 106 - Read Online
P. 106

Mao et al. Chem Synth 2023;3:26  https://dx.doi.org/10.20517/cs.2022.41         Page 33 of 33

                    photodynamic combined photothermal therapy. Photodiagnosis Photodyn Ther 2017;19:128-34.  DOI  PubMed
               177.      Nikam AN, Pandey A, Fernandes G, et al. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging
                    of cancer: Recent advances and toxicological perspectives. Coord Chem Rev 2020;419:213356.  DOI
               178.      Han L, Zhang Y, Chen XW, Shu Y, Wang JH. Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for
                    photothermal and photodynamic therapy. J Mater Chem B 2016;4:105-12.  DOI
               179.      Liu W, Xiang H, Tan M, et al. Nanomedicine enables drug-potency activation with tumor sensitivity and hyperthermia synergy in the
                    second near-infrared biowindow. ACS Nano 2021;15:6457-70.  DOI
               180.      Chen L, Zhou L, Wang C, et al. Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced
                    immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers. Adv Mater 2019;31:e1904997.
                    DOI  PubMed
               181.      Ricciardi V, Portaccio M, Lasalvia M, et al. Evaluation of proton-induced biomolecular changes in MCF-10A breast cells by means
                    of FT-IR microspectroscopy. Appl Sci 2022;12:5074.  DOI
               182.      Qi J, Geng C, Tang X, et al. Effect of spatial distribution of boron and oxygen concentration on DNA damage induced from boron
                    neutron capture therapy using Monte Carlo simulations. Int J Radiat Biol 2021;97:986-96.  DOI
               183.      Ganjeh Z, Eslami-kalantari M, Ebrahimi Loushab M, Mowlavi AA. Calculation of direct DNA damages by a new approach for
                    carbon ions and protons using Geant4-DNA. Radiat Phys and Chem 2021;179:109249.  DOI
               184.      Zhao Y, Chen BQ, Kankala RK, Wang SB, Chen AZ. Recent advances in combination of copper chalcogenide-based photothermal
                    and reactive oxygen species-related therapies. ACS Biomater Sci Eng 2020;6:4799-815.  DOI
               185.      Zhou X, Liu H, Zheng Y, et al. Overcoming radioresistance in tumor therapy by alleviating hypoxia and using the HIF-1 inhibitor.
                    ACS Appl Mater Interfaces 2020;12:4231-40.  DOI
               186.      Peng C, Liang Y, Chen Y, et al. Hollow mesoporous tantalum oxide based nanospheres for triple sensitization of radiotherapy. ACS
                    Appl Mater Interfaces 2020;12:5520-30.  DOI
               187.      Jiang W, Han X, Zhang T, Xie D, Zhang H, Hu Y. An oxygen self-evolving, multistage delivery system for deeply located hypoxic
                    tumor treatment. Adv Healthc Mater 2020;9:e1901303.  DOI  PubMed
               188.      Yan T, Yang K, Chen C, et al. Synergistic photothermal cancer immunotherapy by Cas9 ribonucleoprotein-based copper sulfide
                    nanotherapeutic platform targeting PTPN2. Biomaterials 2021;279:121233.  DOI
               189.      Li N, Sun Q, Yu Z, et al. Nuclear-targeted photothermal therapy prevents cancer recurrence with near-infrared triggered copper
                    sulfide nanoparticles. ACS Nano 2018;12:5197-206.  DOI
               190.      Jiang Y, Huo Z, Qi X, Zuo T, Wu Z. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper
                    complexes. Nanomedicine 2022;17:303-24.  DOI  PubMed
               191.      Kahlson MA, Dixon SJ. Copper-induced cell death. Science 2022;375:1231-2.  DOI  PubMed
   101   102   103   104   105   106   107   108   109   110   111