Page 103 - Read Online
P. 103

Page 30 of 33                         Mao et al. Chem Synth 2023;3:26  https://dx.doi.org/10.20517/cs.2022.41

                    ablation of cancer cells. Adv Mater 2011;23:3542-7.  DOI
               91.       Kriegel I, Scotognella F, Manna L. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and
                    perspectives. Phys Rep 2017;674:1-52.  DOI
               92.       Fenton JL, Schaak RE. Structure-selective cation exchange in the synthesis of zincblende MnS and CoS nanocrystals. Angew Chem
                    Int Ed Engl 2017;56:6464-7.  DOI  PubMed
               93.       Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound copper chalcogenide nanocrystals. Chem Rev
                    2017;117:5865-6109.  DOI  PubMed
               94.       Balendhran S, Hussain Z, Shrestha VR, et al. Copper tetracyanoquinodimethane (CuTCNQ): a metal-organic semiconductor for
                    room-temperature visible to long-wave infrared photodetection. ACS Appl Mater Interfaces 2021;13:38544-52.  DOI  PubMed
               95.       Muhammad Z, Mu K, Lv H, et al. Electron doping induced semiconductor to metal transitions in ZrSe  layers via copper atomic
                                                                                        2
                    intercalation. Nano Res 2018;11:4914-22.  DOI
               96.       Gan Z, Zhou P, Dong A, Zheng D, Wang H. A laser and electric pulse modulated nonvolatile photoelectric response in nanoscale
                    copper dusted metal-oxide-semiconductor structures. Adv Electron Mater 2018;4:1800234.  DOI
               97.       Muhammed MA, Döblinger M, Rodríguez-Fernández J. Switching plasmons: gold nanorod-copper chalcogenide core-shell
                    nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances. J Am Chem Soc 2015;137:11666-77.  DOI
                    PubMed
               98.       Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater
                    2011;10:911-21.  DOI  PubMed
               99.       Ma RM, Oulton RF, Sorger VJ, Bartal G, Zhang X. Room-temperature sub-diffraction-limited plasmon laser by total internal
                    reflection. Nat Mater 2011;10:110-3.  DOI  PubMed
               100.      Alavirad M, Roy L, Berini P. Surface plasmon enhanced photodetectors based on internal photoemission. J Photon Energy
                    2016;6:042511.  DOI
               101.      Fang Y, Jiao Y, Xiong K, et al. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO nanostructures.
                                                                                               2
                    Nano Lett 2015;15:4059-65.  DOI  PubMed
               102.      Smith JG, Faucheaux JA, Jain PK. Plasmon resonances for solar energy harvesting: a mechanistic outlook. Nano Today 2015;10:67-
                    80.  DOI
                                                                                                  3+
                                                                                                     3+
               103.      Zhou D, Li D, Zhou X, et al. Semiconductor plasmon induced up-conversion enhancement in mCu S@SiO @Y O :Yb /Er  core-
                                                                                               3
                                                                                    2-x
                                                                                          2
                                                                                             2
                    shell nanocomposites. ACS Appl Mater Interfaces 2017;9:35226-33.  DOI  PubMed
               104.      Cui J, Xu S, Guo C, Jiang R, James TD, Wang L. Highly efficient photothermal semiconductor nanocomposites for photothermal
                    imaging of latent fingerprints. Anal Chem 2015;87:11592-8.  DOI
               105.      Cui J, Jiang R, Guo C, Bai X, Xu S, Wang L. Fluorine grafted Cu S -Au heterodimers for multimodal imaging guided photothermal
                                                               7 4
                    therapy with high penetration depth. J Am Chem Soc 2018;140:5890-4.  DOI
               106.      Wang Y, Wang W, Sang D, Yu K, Lin H, Qu F. Cu Se/Bi Se @PEG Z-scheme heterostructure: a multimode bioimaging guided
                                                              3
                                                           2
                                                      2-x
                    theranostic agent with enhanced photo/chemodynamic and photothermal therapy. Biomater Sci 2021;9:4473-83.  DOI  PubMed
               107.      Shi H, Yan R, Wu L, et al. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph
                    node metastasis. Acta Biomater 2018;72:256-65.  DOI
               108.      Yuan Y, Raj P, Zhang J, Siddhanta S, Barman I, Bulte JWM. Furin-mediated self-assembly of olsalazine nanoparticles for targeted
                    raman imaging of tumors. Angew Chem Int Ed Engl 2021;60:3923-7.  DOI  PubMed  PMC
               109.      Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins.  Coord Chem Rev
                    2020;412:213258.  DOI
               110.      Cai H, Dai X, Wang X, et al. A nanostrategy for efficient imaging-guided antitumor therapy through a stimuli-responsive branched
                    polymeric prodrug. Adv Sci 2020;7:1903243.  DOI  PubMed  PMC
                                                           19
               111.      Staal AHJ, Becker K, Tagit O, et al. In vivo clearance of  F MRI imaging nanocarriers is strongly influenced by nanoparticle
                    ultrastructure. Biomaterials 2020;261:120307.  DOI  PubMed
               112.      Su H, Kwok KW, Cleary K, et al. State of the art and future opportunities in MRI-guided robot-assisted surgery and interventions.
                    Proc IEEE Inst Electr Electron Eng 2022;110:968-92.  DOI  PubMed  PMC
               113.      Xu J, Zhang Y, Liu Y, et al. Vitality-enhanced dual-modal tracking system reveals the dynamic fate of mesenchymal stem cells for
                    stroke therapy. Small 2022;18:e2203431.  DOI  PubMed
               114.      Wang H, Wang Y, Lu L, et al. Reducing valence states of Co Active Sites in a Single-Atom Nanozyme for Boosted Tumor Therapy.
                    Adv Funct Materials 2022;32:2200331.  DOI
               115.      Pipal RW, Stout KT, Musacchio PZ, et al. Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery. Nature
                    2021;589:542-7.  DOI  PubMed  PMC
               116.      Chen Y, Zhao B, Zhang H, Zhang T, Yang D, Qiu F. Laminated PET-based membranes with sweat transportation and dual thermal
                    insulation properties. J Chem Eng 2022;450:138177.  DOI
               117.      Zhou YP, Sun Y, Takahashi K, et al. Development of a PET radioligand for α2δ-1 subunit of calcium channels for imaging
                    neuropathic pain. Eur J Med Chem 2022;242:114688.  DOI  PubMed  PMC
               118.      Wu W, Pu Y, Shi J. Dual Size/charge-switchable nanocatalytic medicine for deep tumor therapy. Adv Sci 2021;8:2002816.  DOI
                    PubMed  PMC
                                                           64
               119.      Guo W, Sun X, Jacobson O, et al. Intrinsically radioactive [ Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved
   98   99   100   101   102   103   104   105   106   107   108