Page 18 - Read Online
P. 18

Page 143                         Bektaş et al. Art Int Surg 2022;2:132-43  https://dx.doi.org/10.20517/ais.2022.20

                   pancreaticoduodenectomy. Eur J Radiol 2021;139:109693.  DOI  PubMed
               69.      Han IW, Cho K, Ryu Y, et al. Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence.
                   World J Gastroenterol 2020;26:4453-64.  DOI  PubMed  PMC
               70.      Skawran SM, Kambakamba P, Baessler B, et al. Can magnetic resonance imaging radiomics of the pancreas predict postoperative
                   pancreatic fistula? Eur J Radiol 2021;140:109733.  DOI  PubMed
               71.      Cos H, Li D, Williams G, et al. Predicting outcomes in patients undergoing pancreatectomy using wearable technology and machine
                   learning: prospective cohort study. J Med Internet Res 2021;23:e23595.  DOI  PubMed  PMC
               72.      Kuwahara T, Hara K, Mizuno N, et al. Usefulness of deep learning analysis for the diagnosis of malignancy in intraductal papillary
                   mucinous neoplasms of the pancreas. Clin Transl Gastroenterol 2019;10:1-8.  DOI  PubMed  PMC
               73.      Attiyeh MA, Chakraborty J, Gazit L, et al. Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative
                   CT image analysis. HPB (Oxford) 2019;21:212-8.  DOI  PubMed  PMC
               74.      Chen Y, Liu H, Zhang J, et al. Prognostic value and predication model of microvascular invasion in patients with intrahepatic
                   cholangiocarcinoma: a multicenter study from China. BMC Cancer 2021;21:1299.  DOI  PubMed  PMC
               75.      Ren Z, He S, Fan X, et al. Survival prediction model for postoperative hepatocellular carcinoma patients. Medicine (Baltimore)
                   2017;96:e7902.  DOI  PubMed  PMC
               76.      Orcutt  ST,  Anaya  DA.  Liver  resection  and  surgical  strategies  for  management  of  primary  liver  cancer.  Cancer  Control
                   2018;25:1073274817744621.  DOI  PubMed  PMC
               77.      Zhu H, Li T, Du Y, Li M. Pancreatic cancer: challenges and opportunities. BMC Med 2018;16:214.  DOI  PubMed  PMC
               78.      Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys
                   Acta Rev Cancer 2020;1873:188314.  DOI  PubMed  PMC
               79.      Samim M, Mungroop TH, AbuHilal M, et al; HPB-RISC Study Group. Surgeons’ assessment versus risk models for predicting
                   complications of hepato-pancreato-biliary surgery (HPB-RISC): a multicenter prospective cohort study. HPB (Oxford) 2018;20:809-
                   14.  DOI  PubMed
               80.      Li B, Qin Y, Qiu Z, Ji J, Jiang X. A cohort study of hepatectomy-related complications and prediction model for postoperative liver
                   failure after major liver resection in 1441 patients without obstructive jaundice. Ann Transl Med 2021;9:305.  DOI  PubMed  PMC
               81.      Ma KW, Cheung TT, She WH, et al. Risk prediction model for major complication after hepatectomy for malignant tumour - a
                   validated scoring system from a university center. Surg Oncol 2017;26:446-52.  DOI  PubMed
               82.      Lu JH, Tong GX, Hu XY, Guo RF, Wang S. Construction and evaluation of a nomogram to predict gallstone disease based on body
                   composition. Int J Gen Med 2022;15:5947-56.  DOI  PubMed  PMC
               83.      Shimizu Y, Hijioka S, Hirono S, et al. New model for predicting malignancy in patients with intraductal papillary mucinous neoplasm.
                   Ann Surg 2020;272:155-62.  DOI  PubMed
               84.      Kim MS, Kwon HJ, Park HW, et al. Preoperative prediction model for conversion of laparoscopic to open cholecystectomy in patient
                   with acute cholecystitis: based on clinical, laboratory, and CT parameters. J Comput Assist Tomogr 2014;38:727-32.  DOI  PubMed
               85.      Liu R, An J, Wang Z, et al. Artificial intelligence in laparoscopic cholecystectomy: does computer vision outperform human vision?
                   Art Int Surg 2022;2:80-92.  DOI
               86.      Tranter-entwistle I, Eglinton T, Connor S, Hugh TJ. Operative difficulty in laparoscopic cholecystectomy: considering the role of
                   machine learning platforms in clinical practice. Art Int Surg 2022.  DOI
               87.      Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods 2018;15:233-4.  DOI  PubMed  PMC
               88.      Grant L, Joo P, Nemnom MJ, Thiruganasambandamoorthy V. Machine learning versus traditional methods for the development of risk
                   stratification scores: a case study using original Canadian Syncope Risk Score data. Intern Emerg Med 2022;17:1145-53.  DOI
                   PubMed
               89.      Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 2010;5:1315-6.  DOI  PubMed
               90.      Kusters R, Misevic D, Berry H, et al. Interdisciplinary research in artificial intelligence: challenges and opportunities. Front Big Data
                   2020;3:577974.  DOI  PubMed  PMC
   13   14   15   16   17   18   19   20   21   22   23