Page 22 - Read Online
P. 22

Page 176                         O’Reilly et al. Art Int Surg 2022;2:173-6  https://dx.doi.org/10.20517/ais.2022.26

               DECLARATIONS
               Authors’ contributions
               Made substantial contributions to conception and design of the study and performed data analysis, data
               acquisition and interpretation, as well as provided administrative, technical, and material support: O’Reilly
               DA, Pitt HA

               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               None.

               Conflicts of interest
               Both authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2022.


               REFERENCES
               1.       Gumbs AA, Perretta S, d’Allemagne B, Chouillard E. What is Artificial Intelligence Surgery? Art Int Surg 2021;1:1-10.  DOI
               2.       Gumbs AA, Alexander F, Karcz K, et al. White paper: definitions of artificial intelligence and autonomous actions in clinical surgery.
                   Art Int Surg 2022;2:93-100.  DOI
               3.       Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg 2018;268:70-6.  DOI
                   PubMed  PMC
               4.       de Liguori Carino N, Baltatzis M, Maroso F, et al. A fast-track surgery programme leads to timelier treatment and higher resection
                   rates in pancreatic cancer. HPB (Oxford) 2022;24:893-900.  DOI  PubMed
               5.       Franken  LC,  Schreuder  AM,  Roos  E,  et  al.  Morbidity  and  mortality  after  major  liver  resection  in  patients  with  perihilar
                   cholangiocarcinoma: a systematic review and meta-analysis. Surgery 2019;165:918-28.  DOI  PubMed
               6.       Beane JD, Borrebach JD, Zureikat AH, Kilbane EM, Thompson VM, Pitt HA. Optimal pancreatic surgery: are we making progress in
                   North America? Ann Surg 2021;274:e355-63.  DOI  PubMed
               7.       Arnold M, Rutherford MJ, Bardot A, et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995-
                   2014 (ICBP SURVMARK-2): a population-based study. Lancet Oncol 2019;20:1493-505.  DOI  PubMed  PMC
               8.       Mise Y, Hasegawa K, Satou S, et al. How has virtual hepatectomy changed the practice of liver surgery? Ann Surg 2018;268:127-33.
                   DOI  PubMed
               9.       Brunt LM, Deziel DJ, Telem DA, et al. Safe cholecystectomy multi-society practice guideline and state of the art consensus conference
                   o n    p r e v e n t i o n    o f    b i l e    d u c t    i n j u r y    d u r i n g    l a p a r o s c o p i c    c h o l e c y s t e c t o m  y .    A  v a i l a b l e    f r o m  :
                   https://www.sages.org/publications/guidelines/safe-cholecystectomy-multi-society-practice-guideline/ [Last accessed on 9 Sep 2022].
               10.      Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify
                   surgical anatomy during laparoscopic cholecystectomy. Ann Surg 2022;276:363-9.  DOI  PubMed  PMC
               11.      Tranter-Entwistle I, Eglinton T, Connor S, Hugh TJ. Operative difficulty in laparoscopic cholecystectomy: considering the role of
                   machine learning platforms in clinical practice. Art Int Surg 2022;2:46-56.  DOI
               12.      Merath K, Hyer JM, Mehta R, et al. Use of machine learning for prediction of patient risk of postoperative complications after liver,
                   pancreatic, and colorectal surgery. J Gastrointest Surg 2020;24:1843-51.  DOI  PubMed
               13.      Zhou Y, He L, Huang Y, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in
                   hepatocellular carcinoma. Abdom Radiol (NY) 2017;42:1695-704.  DOI  PubMed
               14.      Sala Elarre P, Oyaga-Iriarte E, Yu KH, et al. Use of machine-learning algorithms in intensified preoperative therapy of pancreatic
                   cancer to predict individual risk of relapse. Cancers (Basel) 2019;11:606.  DOI  PubMed  PMC
               15.      Bari H, Wadhwani S, Dasari BVM. Role of artificial intelligence in hepatobiliary and pancreatic surgery. World J Gastrointest Surg
                   2021;13:7-18.  DOI  PubMed  PMC
   17   18   19   20   21   22   23   24   25   26   27