Page 17 - Read Online
P. 17

Bektaş et al. Art Int Surg 2022;2:132-43  https://dx.doi.org/10.20517/ais.2022.20   Page 142

               41.      Hamamoto I, Okada S, Hashimoto T, Wakabayashi H, Maeba T, Maeta H. Prediction of the early prognosis of the hepatectomized
                   patient with hepatocellular carcinoma with a neural network. Computers in Biology and Medicine 1995;25:49-59.  DOI  PubMed
               42.      Zhu HB, Xu D, Ye M, et al. Deep learning-assisted magnetic resonance imaging prediction of tumor response to chemotherapy in
                   patients with colorectal liver metastases. Int J Cancer 2021;148:1717-30.  DOI  PubMed
               43.      Chen Y, Liu Z, Mo Y, et al. Prediction of post-hepatectomy liver failure in patients with hepatocellular carcinoma based on radiomics
                   using Gd-EOB-DTPA-enhanced MRI: the liver failure model. Front Oncol 2021;11:605296.  DOI  PubMed  PMC
               44.      Zhu WS, Shi SY, Yang ZH, Song C, Shen J. Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting
                   liver failure. World J Gastroenterol 2020;26:1208-20.  DOI  PubMed  PMC
               45.      Mai RY, Lu HZ, Bai T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy
                   in patients with hepatocellular carcinoma. Surgery 2020;168:643-52.  DOI  PubMed
               46.      Mai RY, Zeng J, Mo YS, et al. Artificial neural network model for liver cirrhosis diagnosis in patients with hepatitis B virus-related
                   hepatocellular carcinoma. Ther Clin Risk Manag 2020;16:639-49.  DOI  PubMed  PMC
               47.      Kato H, Kanematsu M, Zhang X, et al. Computer-aided diagnosis of hepatic fibrosis: preliminary evaluation of MRI texture analysis
                   using the finite difference method and an artificial neural network. AJR Am J Roentgenol 2007;189:117-22.  DOI  PubMed
               48.      Zhang T, Wei Y, He X, et al. Prediction of remnant liver regeneration after right hepatectomy in patients with hepatocellular
                   carcinoma using preoperative CT texture analysis and clinical features. Contrast Media Mol Imaging 2021;2021:5572470.  DOI
                   PubMed  PMC
               49.      Merath K, Hyer JM, Mehta R, et al. Use of machine learning for prediction of patient risk of postoperative complications after liver,
                   pancreatic, and colorectal surgery. J Gastrointest Surg 2020;24:1843-51.  DOI  PubMed
               50.      Lei L, Wang Y, Xue Q, Tong J, Zhou CM, Yang JJ. A comparative study of machine learning algorithms for predicting acute kidney
                   injury after liver cancer resection. PeerJ 2020;8:e8583.  DOI  PubMed  PMC
               51.      Tsilimigras DI, Mehta R, Moris D, et al. Utilizing machine learning for pre- and postoperative assessment of patients undergoing
                   resection for BCLC-0, A and B hepatocellular carcinoma: implications for resection beyond the BCLC guidelines. Ann Surg Oncol
                   2020;27:866-74.  DOI  PubMed
               52.      Tsilimigras DI, Mehta R, Moris D, et al. A machine-based approach to preoperatively identify patients with the most and least benefit
                   associated with resection for intrahepatic cholangiocarcinoma: an international multi-institutional analysis of 1146 patients. Ann Surg
                   Oncol 2020;27:1110-9.  DOI  PubMed
               53.      Bagante F, Spolverato G, Merath K, et al. Intrahepatic cholangiocarcinoma tumor burden: a classification and regression tree model to
                   define prognostic groups after resection. Surgery 2019;166:983-90.  DOI  PubMed
               54.      Tsilimigras DI, Hyer JM, Paredes AZ, et al. A novel classification of intrahepatic cholangiocarcinoma phenotypes using machine
                   learning techniques: an international multi-institutional analysis. Ann Surg Oncol 2020;27:5224-32.  DOI  PubMed
               55.      Moro A, Mehta R, Tsilimigras DI, et al. Prognostic factors differ according to KRAS mutational status: a classification and regression
                   tree model to define prognostic groups after hepatectomy for colorectal liver metastasis. Surgery 2020;168:497-503.  DOI  PubMed
               56.      Gholipour C, Fakhree MB, Shalchi RA, Abbasi M. Prediction of conversion of laparoscopic cholecystectomy to open surgery with
                   artificial neural networks. BMC Surg 2009;9:13.  DOI  PubMed  PMC
               57.      Eldar S, Siegelmann HT, Buzaglo D, et al. Conversion of laparoscopic cholecystectomy to open cholecystectomy in acute
                   cholecystitis: artificial neural networks improve the prediction of conversion. World J Surg 2002;26:79-85.  DOI  PubMed
               58.      Bouarfa L, Schneider A, Feussner H, et al. Prediction of intraoperative complexity from preoperative patient data for laparoscopic
                   cholecystectomy. Artif Intell Med 2011;52:169-76.  DOI  PubMed
               59.      Liew PL, Lee YC, Lin YC, et al. Comparison of artificial neural networks with logistic regression in prediction of gallbladder disease
                   among obese patients. Dig Liver Dis 2007;39:356-62.  DOI  PubMed
               60.      Vukicevic AM, Stojadinovic M, Radovic M, et al. Automated development of artificial neural networks for clinical purposes:
                   Application for predicting the outcome of choledocholithiasis surgery. Comput Biol Med 2016;75:80-9.  DOI  PubMed
               61.      Shi HY, Lee HH, Tsai JT, et al. Comparisons of prediction models of quality of life after laparoscopic cholecystectomy: a longitudinal
                   prospective study. PLoS One 2012;7:e51285.  DOI  PubMed  PMC
               62.      Velez-Serrano JF, Velez-Serrano D, Hernandez-Barrera V, et al. Prediction of in-hospital mortality after pancreatic resection in
                   pancreatic cancer patients: a boosting approach via a population-based study using health administrative data.  PLoS One
                   2017;12:e0178757.  DOI  PubMed  PMC
               63.      Mofidi R, Duff MD, Madhavan KK, Garden OJ, Parks RW. Identification of severe acute pancreatitis using an artificial neural
                   network. Surgery 2007;141:59-66.  DOI  PubMed
               64.      Ansari D, Nilsson J, Andersson R, Regnér S, Tingstedt B, Andersson B. Artificial neural networks predict survival from pancreatic
                   cancer after radical surgery. Am J Surg 2013;205:1-7.  DOI  PubMed
               65.      Walczak S, Velanovich V. An evaluation of artificial neural networks in predicting pancreatic cancer survival. J Gastrointest Surg
                   2017;21:1606-12.  DOI  PubMed
               66.      Sala Elarre P, Oyaga-Iriarte E, Yu KH, et al. Use of machine-learning algorithms in intensified preoperative therapy of pancreatic
                   cancer to predict individual risk of relapse. Cancers (Basel) 2019;11:606.  DOI  PubMed  PMC
               67.      Mu W, Liu C, Gao F, et al. Prediction of clinically relevant pancreatico-enteric anastomotic fistulas after pancreatoduodenectomy
                   using deep learning of preoperative computed tomography. Theranostics 2020;10:9779-88.  DOI  PubMed  PMC
               68.      Lin  Z,  Tang  B,  Cai  J,  et  al.  Preoperative  prediction  of  clinically  relevant  postoperative  pancreatic  fistula  after
   12   13   14   15   16   17   18   19   20   21   22