Page 16 - Read Online
P. 16

Page 141                         Bektaş et al. Art Int Surg 2022;2:132-43  https://dx.doi.org/10.20517/ais.2022.20

               12.      Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. 2017 International Conference on
                   Engineering and Technology (ICET).  DOI
               13.      Rusk N. Deep learning. Nat Methods 2016;13:35-35.  DOI
               14.      Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012;30:1234-48.  DOI  PubMed
                   PMC
               15.      Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018;2:719-31.  DOI  PubMed
               16.      Andras I, Mazzone E, van Leeuwen FWB, et al. Artificial intelligence and robotics: a combination that is changing the operating room.
                   World J Urol 2020;38:2359-66.  DOI  PubMed
               17.      Spolverato G, Ejaz A, Hyder O, Kim Y, Pawlik TM. Failure to rescue as a source of variation in hospital mortality after hepatic
                   surgery. Br J Surg 2014;101:836-46.  DOI  PubMed
               18.      Pulte D, Weberpals J, Schröder CC, et al; GEKID Cancer Survival Working Group. Survival of patients with hepatobiliary tract and
                   duodenal cancer sites in Germany and the United States in the early 21st century. Int J Cancer 2018;143:324-32.  DOI  PubMed
               19.      Versteijne E, van Dam JL, Suker M, et al; Dutch Pancreatic Cancer Group. Neoadjuvant chemoradiotherapy versus upfront surgery for
                   resectable and borderline resectable pancreatic cancer: long-term results of the dutch randomized preopanc trial. J Clin Oncol
                   2022;40:1220-30.  DOI  PubMed
               20.      Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ
                   2016;355:i4919.  DOI  PubMed  PMC
               21.      Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies:
                   explanation and elaboration. Ann Intern Med 2019;170:W1-W33.  DOI  PubMed
               22.      Mai RY, Zeng J, Meng WD, et al. Artificial neural network model to predict post-hepatectomy early recurrence of hepatocellular
                   carcinoma without macroscopic vascular invasion. BMC Cancer 2021;21:283.  DOI  PubMed  PMC
               23.      Chong H, Gong Y, Pan X, et al. Peritumoral dilation radiomics of gadoxetate disodium-enhanced MRI excellently predicts early
                   recurrence of hepatocellular carcinoma without macrovascular invasion after hepatectomy. J Hepatocell Carcinoma 2021;8:545-63.
                   DOI  PubMed  PMC
               24.      Ning P, Gao F, Hai J, et al. Application of CT radiomics in prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol
                   (NY) 2020;45:64-72.  DOI  PubMed
               25.      Shan QY, Hu HT, Feng ST, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma
                   after curative tumor resection or ablation. Cancer Imaging 2019;19:11.  DOI  PubMed  PMC
               26.      Wang W, Chen Q, Iwamoto Y, et al. Deep fusion models of multi-phase CT and selected clinical data for preoperative prediction of
                   early recurrence in hepatocellular carcinoma. IEEE Access 2020;8:139212-20.  DOI
               27.      Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular
                   carcinoma after resection: A multi-institutional study. EBioMedicine 2019;50:156-65.  DOI  PubMed  PMC
               28.      Qin H, Hu X, Zhang J, et al. Machine-learning radiomics to predict early recurrence in perihilar cholangiocarcinoma after curative
                   resection. Liver Int 2021;41:837-50.  DOI  PubMed
               29.      Schoenberg MB, Bucher JN, Koch D, et al. A novel machine learning algorithm to predict disease free survival after resection of
                   hepatocellular carcinoma. Ann Transl Med 2020;8:434.  DOI  PubMed  PMC
               30.      Chiu HC, Ho TW, Lee KT, Chen HY, Ho WH. Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic
                   resection using artificial neural network. ScientificWorldJournal 2013;2013:201976.  DOI  PubMed  PMC
               31.      Qiao G, Li J, Huang A, Yan Z, Lau WY, Shen F. Artificial neural networking model for the prediction of post-hepatectomy survival of
                   patients with early hepatocellular carcinoma. J Gastroenterol Hepatol 2014;29:2014-20.  DOI  PubMed
               32.      Spelt L, Nilsson J, Andersson R, Andersson B. Artificial neural networks - a method for prediction of survival following liver resection
                   for colorectal cancer metastases. Eur J Surg Oncol 2013;39:648-54.  DOI  PubMed
               33.      Ho WH, Lee KT, Chen HY, Ho TW, Chiu HC. Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a
                   prediction approach using artificial neural network. PLoS One 2012;7:e29179.  DOI  PubMed  PMC
               34.      Dong Y, Zhou L, Xia W, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma: initial application of a
                   radiomic algorithm based on grayscale ultrasound images. Front Oncol 2020;10:353.  DOI  PubMed  PMC
               35.      Feng ST, Jia Y, Liao B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-
                   EOB-DTPA-enhanced MRI. Eur Radiol 2019;29:4648-59.  DOI  PubMed
               36.      Song D, Wang Y, Wang W, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic
                   contrast-enhanced MRI combined with clinical parameters. J Cancer Res Clin Oncol 2021;147:3757-67.  DOI  PubMed
               37.      Zhou W, Jian W, Cen X, et al. Prediction of microvascular invasion of hepatocellular carcinoma based on contrast-enhanced MR and
                   3D convolutional neural networks. Front Oncol 2021;11:588010.  DOI  PubMed  PMC
               38.      Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of primary and metastatic liver cancer via machine learning-
                   based ultrasound radiomics. Eur Radiol 2021;31:4576-86.  DOI  PubMed
               39.      Yao X, Huang X, Yang C, et al. A novel approach to assessing differentiation degree and lymph node metastasis of extrahepatic
                   cholangiocarcinoma: prediction using a radiomics-based particle swarm optimization and support vector machine model. JMIR Med
                   Inform 2020;8:e23578.  DOI  PubMed  PMC
               40.      Sahara K, Paredes AZ, Tsilimigras DI, et al. Machine learning predicts unpredicted deaths with high accuracy following
                   hepatopancreatic surgery. Hepatobiliary Surg Nutr 2021;10:20-30.  DOI  PubMed  PMC
   11   12   13   14   15   16   17   18   19   20   21