Page 44 - Read Online
P. 44

Scherman. Rare Dis Orphan Drugs J 2023;2:12  https://dx.doi.org/10.20517/rdodj.2023.01  Page 35 of 35

                    Hum Genet 2013;21:637-42.  DOI  PubMed  PMC
               154.      Study of TD101, a Small interfering RNA (siRNA) designed for treatment of pachyonychia congenita. Available from: https://
                    clinicaltrials.gov/ct2/show/NCT00716014 [Last accessed on 29 May 2023].
               155.      Leachman SA, Hickerson RP, Schwartz ME, et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin
                    disorder. Mol Ther 2010;18:442-6.  DOI  PubMed  PMC
               156.      Trochet D, Prudhon B, Vassilopoulos S, Bitoun M. Therapy for dominant inherited diseases by allele-specific RNA interference:
                    successes and pitfalls. Curr Gene Ther 2015;15:503-10.  DOI  PubMed
               157.      Roth F, Dhiab J, Boulinguiez A, et al. Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human
                    xenograft model of oculopharyngeal muscular dystrophy. Acta Neuropathol 2022;144:1157-70.  DOI  PubMed  PMC
               158.      Banerjee A, Apponi LH, Pavlath GK, Corbett AH. PABPN1: molecular function and muscle disease. FEBS J 2013;280:4230-50.
                    DOI  PubMed  PMC
               159.      Malerba A, Klein P, Bachtarzi H, et al. PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 2017;8:14848.
                    DOI  PubMed  PMC
               160.      Malerba A, Klein P, Lu-Nguyen N, et al. Established PABPN1 intranuclear inclusions in OPMD muscle can be efficiently reversed
                    by AAV-mediated knockdown and replacement of mutant expanded PABPN1. Hum Mol Genet 2019;28:3301-8.  DOI  PubMed
                    PMC
               161.      Strings-Ufombah  V,  Malerba  A,  Kao  SC,  et  al.  BB-301:  a  silence  and  replace  AAV-based  vector  for  the  treatment  of
                    oculopharyngeal muscular dystrophy. Mol Ther Nucleic Acids 2021;24:67-78.  DOI  PubMed  PMC
               162.      Cao W, Lia R, Pei X, et al. Antibody–siRNA conjugates (ARC): emerging siRNA drug formulation. Medicine in Drug Discovery
                    2022;15:100128.  DOI
               163.      Zlatev I, Castoreno A, Brown CR, et al. Reversal of siRNA-mediated gene silencing in vivo. Nat Biotechnol 2018;36:509-11.  DOI
               164.      Burel SA, Hart CE, Cauntay P, et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1
                    dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 2016;44:2093-109.  DOI  PubMed  PMC
               165.      Kasuya T, Hori S, Watanabe A, et al. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer
                    antisense oligonucleotides. Sci Rep 2016;6:30377.  DOI  PubMed  PMC
               166.      Yasuhara H, Yoshida T, Sasaki K, Obika S, Inoue T. Reduction of off-target effects of gapmer antisense oligonucleotides by
                    oligonucleotide extension. Mol Diagn Ther 2022;26:117-27.  DOI  PubMed  PMC
               167.      Kobayashi Y, Tian S, Ui-Tei K. The siRNA off-target effect is determined by base-pairing stabilities of two different regions with
                    opposite effects. Genes 2022;13:319.  DOI  PubMed  PMC
               168.      Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery
                    vehicles. Mol Ther 2012;20:513-24.  DOI  PubMed  PMC
               169.      Alagia A, Eritja R. siRNA and RNAi optimization. Wiley Interdiscip Rev RNA 2016;7:316-29.  DOI  PubMed
               170.      Grimm D, Wang L, Lee JS, et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult
                    mouse liver. J Clin Invest 2010;120:3106-19.  DOI  PubMed  PMC
               171.      Cardinali B, Provenzano C, Izzo M, et al. Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat
                    expansion in the DMPK gene. Mol Ther Nucleic Acids 2022;27:184-99.  DOI  PubMed  PMC
               172.      Wallace LM, Garwick-Coppens SE, Tupler R, Harper SQ. RNA interference improves myopathic phenotypes in mice over-
                    expressing FSHD region gene 1 (FRG1). Mol Ther 2011;19:2048-54.  DOI  PubMed  PMC
               173.      Gautier B, Hajjar H, Soares S, et al. AAV2/9-mediated silencing of PMP22 prevents the development of pathological features in a rat
                    model of Charcot-Marie-Tooth disease 1 A. Nat Commun 2021;12:2356.  DOI  PubMed  PMC
               174.      Morelli KH, Griffin LB, Pyne NK, et al. Allele-specific RNA interference prevents neuropathy in charcot-marie-tooth disease type
                    2D mouse models. J Clin Invest 2019;129:5568-83.  DOI  PubMed  PMC
               175.      Muraine L, Bensalah M, Dhiab J, et al. Transduction efficiency of adeno-associated virus serotypes after local injection in mouse and
                    human skeletal muscle. Hum Gene Ther 2020;31:233-40.  DOI  PubMed  PMC
               176.      Boivin M, Charlet-Berguerand N. Trinucleotide CGG repeat diseases: an expanding field of polyglycine proteins? Front Genet
                    2022;13:843014.  DOI  PubMed  PMC
               177.      Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier C. Repeat-associated non-AUG (RAN) translation and other molecular
                    mechanisms in fragile X tremor ataxia syndrome. Brain Res 2018;1693:43-54.  DOI  PubMed  PMC
               178.      German CA, Shapiro MD. Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9. BioDrugs 2020;34:1-9.
                    DOI  PubMed
               179.      Lemaitre MM. Individualized antisense oligonucleotide therapies: how to approach the challenge of manufacturing these oligos from
                    a chemistry, manufacturing, and control-regulatory standpoint. Nucleic Acid Ther 2022;32:101-10.  DOI  PubMed
               180.      Crooke ST. Meeting the needs of patients with ultrarare diseases. Trends Mol Med 2022;28:87-96.  DOI  PubMed
               181.      Kim J, Hu C, Moufawad El Achkar C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med
                    2019;381:1644-52.  DOI  PubMed  PMC
               182.      Treatment of a single patient with CRD-TMH-001. Available from: https://clinicaltrials.gov/ct2/show/NCT05514249 [Last accessed
                    on 29 May 2023].
   39   40   41   42   43   44   45   46   47   48   49