Page 44 - Read Online
P. 44
Scherman. Rare Dis Orphan Drugs J 2023;2:12 https://dx.doi.org/10.20517/rdodj.2023.01 Page 35 of 35
Hum Genet 2013;21:637-42. DOI PubMed PMC
154. Study of TD101, a Small interfering RNA (siRNA) designed for treatment of pachyonychia congenita. Available from: https://
clinicaltrials.gov/ct2/show/NCT00716014 [Last accessed on 29 May 2023].
155. Leachman SA, Hickerson RP, Schwartz ME, et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin
disorder. Mol Ther 2010;18:442-6. DOI PubMed PMC
156. Trochet D, Prudhon B, Vassilopoulos S, Bitoun M. Therapy for dominant inherited diseases by allele-specific RNA interference:
successes and pitfalls. Curr Gene Ther 2015;15:503-10. DOI PubMed
157. Roth F, Dhiab J, Boulinguiez A, et al. Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human
xenograft model of oculopharyngeal muscular dystrophy. Acta Neuropathol 2022;144:1157-70. DOI PubMed PMC
158. Banerjee A, Apponi LH, Pavlath GK, Corbett AH. PABPN1: molecular function and muscle disease. FEBS J 2013;280:4230-50.
DOI PubMed PMC
159. Malerba A, Klein P, Bachtarzi H, et al. PABPN1 gene therapy for oculopharyngeal muscular dystrophy. Nat Commun 2017;8:14848.
DOI PubMed PMC
160. Malerba A, Klein P, Lu-Nguyen N, et al. Established PABPN1 intranuclear inclusions in OPMD muscle can be efficiently reversed
by AAV-mediated knockdown and replacement of mutant expanded PABPN1. Hum Mol Genet 2019;28:3301-8. DOI PubMed
PMC
161. Strings-Ufombah V, Malerba A, Kao SC, et al. BB-301: a silence and replace AAV-based vector for the treatment of
oculopharyngeal muscular dystrophy. Mol Ther Nucleic Acids 2021;24:67-78. DOI PubMed PMC
162. Cao W, Lia R, Pei X, et al. Antibody–siRNA conjugates (ARC): emerging siRNA drug formulation. Medicine in Drug Discovery
2022;15:100128. DOI
163. Zlatev I, Castoreno A, Brown CR, et al. Reversal of siRNA-mediated gene silencing in vivo. Nat Biotechnol 2018;36:509-11. DOI
164. Burel SA, Hart CE, Cauntay P, et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1
dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 2016;44:2093-109. DOI PubMed PMC
165. Kasuya T, Hori S, Watanabe A, et al. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer
antisense oligonucleotides. Sci Rep 2016;6:30377. DOI PubMed PMC
166. Yasuhara H, Yoshida T, Sasaki K, Obika S, Inoue T. Reduction of off-target effects of gapmer antisense oligonucleotides by
oligonucleotide extension. Mol Diagn Ther 2022;26:117-27. DOI PubMed PMC
167. Kobayashi Y, Tian S, Ui-Tei K. The siRNA off-target effect is determined by base-pairing stabilities of two different regions with
opposite effects. Genes 2022;13:319. DOI PubMed PMC
168. Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery
vehicles. Mol Ther 2012;20:513-24. DOI PubMed PMC
169. Alagia A, Eritja R. siRNA and RNAi optimization. Wiley Interdiscip Rev RNA 2016;7:316-29. DOI PubMed
170. Grimm D, Wang L, Lee JS, et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult
mouse liver. J Clin Invest 2010;120:3106-19. DOI PubMed PMC
171. Cardinali B, Provenzano C, Izzo M, et al. Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat
expansion in the DMPK gene. Mol Ther Nucleic Acids 2022;27:184-99. DOI PubMed PMC
172. Wallace LM, Garwick-Coppens SE, Tupler R, Harper SQ. RNA interference improves myopathic phenotypes in mice over-
expressing FSHD region gene 1 (FRG1). Mol Ther 2011;19:2048-54. DOI PubMed PMC
173. Gautier B, Hajjar H, Soares S, et al. AAV2/9-mediated silencing of PMP22 prevents the development of pathological features in a rat
model of Charcot-Marie-Tooth disease 1 A. Nat Commun 2021;12:2356. DOI PubMed PMC
174. Morelli KH, Griffin LB, Pyne NK, et al. Allele-specific RNA interference prevents neuropathy in charcot-marie-tooth disease type
2D mouse models. J Clin Invest 2019;129:5568-83. DOI PubMed PMC
175. Muraine L, Bensalah M, Dhiab J, et al. Transduction efficiency of adeno-associated virus serotypes after local injection in mouse and
human skeletal muscle. Hum Gene Ther 2020;31:233-40. DOI PubMed PMC
176. Boivin M, Charlet-Berguerand N. Trinucleotide CGG repeat diseases: an expanding field of polyglycine proteins? Front Genet
2022;13:843014. DOI PubMed PMC
177. Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier C. Repeat-associated non-AUG (RAN) translation and other molecular
mechanisms in fragile X tremor ataxia syndrome. Brain Res 2018;1693:43-54. DOI PubMed PMC
178. German CA, Shapiro MD. Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9. BioDrugs 2020;34:1-9.
DOI PubMed
179. Lemaitre MM. Individualized antisense oligonucleotide therapies: how to approach the challenge of manufacturing these oligos from
a chemistry, manufacturing, and control-regulatory standpoint. Nucleic Acid Ther 2022;32:101-10. DOI PubMed
180. Crooke ST. Meeting the needs of patients with ultrarare diseases. Trends Mol Med 2022;28:87-96. DOI PubMed
181. Kim J, Hu C, Moufawad El Achkar C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med
2019;381:1644-52. DOI PubMed PMC
182. Treatment of a single patient with CRD-TMH-001. Available from: https://clinicaltrials.gov/ct2/show/NCT05514249 [Last accessed
on 29 May 2023].