Page 39 - Read Online
P. 39
Page 30 of 35 Scherman. Rare Dis Orphan Drugs J 2023;2:12 https://dx.doi.org/10.20517/rdodj.2023.01
9. Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific
oligodeoxynucleotide. Proc Natl Acad Sci USA 1978;75:280-4. DOI PubMed PMC
10. Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl
Acad Sci USA 1978;75:285-8. DOI PubMed PMC
11. Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ. MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood
Flow Metab 2018;38:1125-48. DOI PubMed PMC
12. Gan W, Guan Z, Liu J, et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev
2011;25:2041-56. DOI PubMed PMC
13. Pang J, Guo Q, Lu Z. The catalytic mechanism, metal dependence, substrate specificity, and biodiversity of ribonuclease H. Front
Microbiol 2022;13:1034811. DOI PubMed PMC
14. Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate
specificity and metal-dependent catalysis. Cell 2005;121:1005-16. DOI
15. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA
in Caenorhabditis elegans. Nature 1998;391:806-11. DOI PubMed
16. Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans.
Proc Natl Acad Sci U S A 1998;95:15502-7. DOI PubMed PMC
17. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in
cultured mammalian cells. Nature 2001; 411: 494-498. DOI PubMed
18. Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem
Biol 2006;2:711-9. DOI PubMed PMC
19. Lisa J. Scherer LJ, Rossi JJ. Principles of RNAi trigger expression for gene therapy. Advanced Textbook on Gene Transfer, Gene
Therapy and Genetic Pharmacology. 2014; pp53-72; Editor Scherman Daniel. Imperial College Press. ISBN: 9781786346872. DOI
20. Snead NM, Rossi JJ. Biogenesis and function of endogenous and exogenous siRNAs. Wiley Interdiscip Rev RNA 2010;1:117-31.
DOI PubMed
21. Scherer L, Rossi JJ. RNAi applications in mammalian cells. Biotechniques 2004;36:557-61. DOI PubMed
22. Foster DJ, Brown CR, Shaikh S, et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates.
Mol Ther 2018;26:708-17. DOI PubMed PMC
23. Gosselin NH, Schuck VJA, Barriere O, et al. Translational population-pharmacodynamic modeling of a novel long-acting siRNA
therapy, inclisiran, for the treatment of hypercholesterolemia. Clin Pharmacol Ther 2023;113:328-38. DOI PubMed
24. Langlois MA, Boniface C, Wang G, et al. Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in
myotonic dystrophy cells. J Biol Chem 2005;280:16949-54. DOI
25. Sobczak K, Wheeler TM, Wang W, Thornton CA. RNA interference targeting CUG repeats in a mouse model of myotonic
dystrophy. Mol Ther 2013;21:380-7. DOI PubMed PMC
26. Bisset DR, Stepniak-Konieczna EA, Zavaljevski M, et al. Therapeutic impact of systemic AAV-mediated RNA interference in a
mouse model of myotonic dystrophy. Hum Mol Genet 2015;24:4971-83. DOI PubMed PMC
27. Gantier MP, Williams BR. The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 2007;18:363-71.
DOI PubMed PMC
28. Gantier MP, Sadler AJ, Williams BR. Fine-tuning of the innate immune response by microRNAs. Immunol Cell Biol 2007;85:458-62.
DOI PubMed
29. Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature
2008;452:591-7. DOI PubMed PMC
30. Cho WG, Albuquerque RJ, Kleinman ME, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel
growth. Proc Natl Acad Sci U S A 2009;106:7137-42. DOI PubMed PMC
31. Bramsen JB, Pakula MM, Hansen TB, et al. A screen of chemical modifications identifies position-specific modification by UNA to
most potently reduce siRNA off-target effects. Nucleic Acids Res 2010;38:5761-73. DOI PubMed PMC
32. Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 2017;35:238-48. DOI
PubMed PMC
33. Crooke ST, Liang XH, Baker BF, Crooke RM. Antisense technology: a review. J Biol Chem 2021;296:100416. DOI PubMed PMC
34. Koller E, Vincent TM, Chappell A, De S, Manoharan M, Bennett CF. Mechanisms of single-stranded phosphorothioate modified
antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 2011;39:4795-807. DOI PubMed PMC
35. Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther 2014;24:374-87. DOI
PubMed
36. Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug
Deliv Rev 2015;87:46-51. DOI PubMed
37. Crooke ST. Vitravene-another piece in the mosaic. Antisense Nucleic Acid Drug Dev 1998;8:vii-viii. DOI PubMed
38. Furdon PJ, Dominski Z, Kole R. RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate,
phosphorothioate and phosphodiester bonds. Nucleic Acids Res 1989;17:9193-204. DOI PubMed PMC
39. Zhang L, Liang XH, De Hoyos CL, et al. The combination of mesyl-phosphoramidate inter-nucleotide linkages and 2'-O-methyl in
selected positions in the antisense oligonucleotide enhances the performance of RNaseH1 active PS-ASOs. Nucleic Acid Ther