Page 42 - Read Online
P. 42
Scherman. Rare Dis Orphan Drugs J 2023;2:12 https://dx.doi.org/10.20517/rdodj.2023.01 Page 33 of 35
SMN2 copy number. Hum Genet 2006;119:422-8. DOI
97. Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique
silencer element located in the last intron. Mol Cell Biol 2006;26:1333-46. DOI PubMed PMC
98. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects
SMN2 splicing in transgenic mice. Am J Hum Genet 2008;82:834-48. DOI PubMed PMC
99. Hua Y, Liu YH, Sahashi K, Rigo F, Bennett CF, Krainer AR. Motor neuron cell-nonautonomous rescue of spinal muscular atrophy
phenotypes in mild and severe transgenic mouse models. Genes Dev 2015;29:288-97. DOI PubMed PMC
100. Touznik A, Maruyama R, Hosoki K, Echigoya Y, Yokota T. LNA/DNA mixmer-based antisense oligonucleotides correct alternative
splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts. Sci Rep 2017;7:3672. DOI PubMed
PMC
101. Benkhelifa-Ziyyat S, Besse A, Roda M, et al. Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal
cord and decreases disease severity in SMA mice. Mol Ther 2013;21:282-90. DOI PubMed PMC
102. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther
2021;29:464-88. DOI PubMed PMC
103. ANDRADE C. A peculiar form of peripheral neuropathy: familiar atypical generalized amyloidosis with special involvement of the
peripheral nerves. Brain 1952;75:408-27. DOI
104. Jacobson DR, Pastore RD, Yaghoubian R, et al. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in
black Americans. N Engl J Med 1997;336:466-73. DOI
105. Dyck PJB, Coelho T, Waddington Cruz M, et al. Neuropathy symptom and change: Inotersen treatment of hereditary transthyretin
amyloidosis. Muscle Nerve 2020;62:509-15. DOI PubMed PMC
106. Westermark P, Sletten K, Johansson B, Cornwell GG 3rd. Fibril in senile systemic amyloidosis is derived from normal transthyretin.
Proc Natl Acad Sci U S A 1990;87:2843-5. DOI PubMed PMC
107. Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J
Med 2018;379:22-31. DOI PubMed
108. Sewing S, Roth AB, Winter M, et al. Assessing single-stranded oligonucleotide drug-induced effects in vitro reveals key risk factors
for thrombocytopenia. PLoS One 2017;12:e0187574. DOI PubMed PMC
109. Flierl U, Nero TL, Lim B, et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. J
Exp Med 2015;212:129-37. DOI PubMed PMC
110. Severi D, Palumbo G, Spina E, et al. A case of severe increase of liver enzymes in a ATTRv patient after one year of inotersen
treatment. Neurol Sci 2023;44:1419-22. DOI PubMed PMC
111. Alnylam pharmaceuticals highlights of US prescribing information. Available from:https://www.alnylam.com/ [Last accessed on 29
May 2023].
112. Marimani MD, Ely A, Buff MC, et al. Inhibition of replication of hepatitis B virus in transgenic mice following administration of
hepatotropic lipoplexes containing guanidinopropyl-modified siRNAs. J Control Release 2015;209:198-206. DOI
113. Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for clinical translation of sirna
therapeutics. Acc Chem Res 2019;52:2435-44. DOI PubMed
114. van der Meel R, Chen S, Zaifman J, et al. Modular lipid nanoparticle platform technology for siRNA and lipophilic prodrug delivery.
Small 2021;17:e2103025. DOI
115. Böttger R, Pauli G, Chao PH, et al. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020;154-155:79-
101. DOI PubMed
116. Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. The growth of siRNA-based therapeutics: updated clinical studies.
Biochem Pharmacol 2021;189:114432. DOI PubMed PMC
117. Weng YH, Xiao HH, Zhang JC, Liang XJ, Huang YY. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol
Adv 2019;37:801-25. DOI
118. Springer AD, Dowdy SF. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther
2018;28:109-18. DOI PubMed PMC
119. Chaumet-Riffaud P, Martinez-Duncker I, Marty AL, et al. Synthesis and application of lactosylated, 99mTc chelating albumin for
measurement of liver function. Bioconjug Chem 2010;21:589-96. DOI PubMed
120. Salmon H, Gahoual R, Houzé P, et al. Europium labeled lactosylated albumin as a model workflow for the development of
biotherapeutics. Nanomedicine 2019;18:21-30. DOI
121. Habtemariam BA, Karsten V, Attarwala H, et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-
acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin Pharmacol Ther 2021;109:372-
82. DOI PubMed
122. Adams D, Tournev IL, Taylor MS, et al; HELIOS-A Collaborators. Efficacy and safety of vutrisiran for patients with hereditary
transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid 2023;30:1-9. DOI
123. Ando Y, Adams D, Benson MD, et al. Guidelines and new directions in the therapy and monitoring of ATTRv amyloidosis. Amyloid
2022;29:143-55. DOI
124. Echaniz-Laguna A, Cauquil C, Labeyrie C, Adams D. Treating hereditary transthyretin amyloidosis: Present & future challenges. Rev
Neurol 2023;179:30-4. DOI PubMed