Page 40 - Read Online
P. 40

Scherman. Rare Dis Orphan Drugs J 2023;2:12  https://dx.doi.org/10.20517/rdodj.2023.01  Page 31 of 35

                    2022;32:401-11.  DOI  PubMed  PMC
               40.       Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev
                    1997;7:187-95.  DOI  PubMed
               41.       Moulton JD. Using morpholinos to control gene expression. Curr Protoc Nucleic Acid Chem 2017;68:4.30.1-4.30.29.  DOI  PubMed
                    PMC
               42.       Amantana A, Iversen PL. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin
                    Pharmacol 2005;5:550-5.  DOI  PubMed
               43.       Renneberg D, Bouliong E, Reber U, Schümperli D, Leumann CJ. Antisense properties of tricyclo-DNA. Nucleic Acids Res
                    2002;30:2751-7.  DOI  PubMed  PMC
               44.       Goyenvalle A, Leumann C, Garcia L. Therapeutic potential of tricyclo-DNA antisense oligonucleotides. J Neuromuscul Dis
                    2016;3:157-67.  DOI  PubMed  PMC
               45.       Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-
                    substituted polyamide. Science 1991;254:1497-500.  DOI  PubMed
               46.       McMahon BM, Mays D, Lipsky J, Stewart JA, Fauq A, Richelson E. Pharmacokinetics and tissue distribution of a peptide nucleic
                    acid after intravenous administration. Antisense Nucleic Acid Drug Dev 2002;12:65-70.  DOI  PubMed
               47.       Lennox KA, Behlke MA. A direct comparison of anti-microRNA oligonucleotide potency. Pharm Res 2010;27:1788-99.  DOI
                    PubMed
               48.       Jearawiriyapaisarn N, Moulton HM, Buckley B, et al. Sustained dystrophin expression induced by peptide-conjugated morpholino
                    oligomers in the muscles of mdx mice. Mol Ther 2008;16:1624-9.  DOI  PubMed  PMC
               49.       Hammond SM, Hazell G, Shabanpoor F, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in
                    spinal muscular atrophy. Proc Natl Acad Sci U S A 2016;113:10962-7.  DOI  PubMed  PMC
               50.       Tajik-Ahmadabad B, Polyzos A, Separovic F, Shabanpoor F. Amphiphilic lipopeptide significantly enhances uptake of charge-neutral
                    splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts. Int J Pharm 2017;532:21-8.  DOI
                    PubMed
               51.       Hangeland JJ, Flesher JE, Deamond SF, Lee YC, Ts'O PO, Frost JJ. Tissue distribution and metabolism of the [32P]-labeled
                    oligodeoxynucleoside methylphosphonate-neoglycopeptide conjugate, [YEE(ah-GalNAc)3]-SMCC-AET-pUmpT7, in the mouse.
                    Antisense Nucleic Acid Drug Dev 1997;7:141-9.  DOI  PubMed
               52.       Maier MA, Yannopoulos CG, Mohamed N, et al. Synthesis of antisense oligonucleotides conjugated to a multivalent carbohydrate
                    cluster for cellular targeting. Bioconjug Chem 2003;14:18-29.  DOI
               53.       Debacker AJ, Voutila J, Catley M, Blakey D, Habib N. Delivery of oligonucleotides to the liver with GalNAc: from research to
                    registered therapeutic Drug. Mol Ther 2020;28:1759-71.  DOI  PubMed  PMC
               54.       Schlegel MK, Janas MM, Jiang Y, et al. From bench to bedside: improving the clinical safety of GalNAc-siRNA conjugates using
                    seed-pairing destabilization. Nucleic Acids Res 2022;50:6656-70.  DOI  PubMed  PMC
               55.       Gennemark P, Walter K, Clemmensen N, et al. An oral antisense oligonucleotide for PCSK9 inhibition.  Sci Transl Med
                    2021;13:eabe9117.  DOI
               56.       Angeli E, Nguyen TT, Janin A, Bousquet G. How to make anticancer drugs cross the blood-brain barrier to treat brain metastases. Int
                    J Mol Sci 2019;21:22.  DOI  PubMed  PMC
               57.       Kawasaki AM, Casper MD, Freier SM, et al. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-
                    resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem 1993;36:831-41.  DOI  PubMed
               58.       Seth PP, Siwkowski A, Allerson CR, et al. Short antisense oligonucleotides with novel 2'-4' conformationaly restricted nucleoside
                    analogues show improved potency without increased toxicity in animals. J Med Chem 2009;52:10-3.  DOI  PubMed
               59.       Shen W, De Hoyos CL, Sun H, et al. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in
                    mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res 2018;46:2204-17.  DOI  PubMed
                    PMC
               60.       Burel SA, Hart CE, Cauntay P, et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1
                    dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 2016;44:2093-109.  DOI  PubMed  PMC
               61.       Kasuya T, Hori S, Watanabe A, et al. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer
                    antisense oligonucleotides. Sci Rep 2016;6:30377.  DOI  PubMed  PMC
               62.       Alterman JF, Godinho BMDC, Hassler MR, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene
                    expression throughout the central nervous system. Nat Biotechnol 2019;37:884-94.  DOI  PubMed  PMC
               63.       . Dicerna. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA. US Pat; 2019. 1-
                    240.
               64.       Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther 2020;5:101.  DOI  PubMed  PMC
               65.       Elkayam E, Parmar R, Brown CR, et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5΄ end of the guide strand augments
                    gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res 2017;45:3528-36.  DOI  PubMed  PMC
               66.       Brown CR, Gupta S, Qin J, et al. Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates. Nucleic Acids Res
                    2020;48:11827-44.  DOI  PubMed  PMC
               67.       Kel'in AV, Zlatev I, Harp J, et al. Structural basis of duplex thermodynamic stability and enhanced nuclease resistance of 5'-C-Methyl
                    Pyrimidine-Modified Oligonucleotides. J Org Chem 2016;81:2261-79.  DOI  PubMed
   35   36   37   38   39   40   41   42   43   44   45