Page 40 - Read Online
P. 40
Scherman. Rare Dis Orphan Drugs J 2023;2:12 https://dx.doi.org/10.20517/rdodj.2023.01 Page 31 of 35
2022;32:401-11. DOI PubMed PMC
40. Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev
1997;7:187-95. DOI PubMed
41. Moulton JD. Using morpholinos to control gene expression. Curr Protoc Nucleic Acid Chem 2017;68:4.30.1-4.30.29. DOI PubMed
PMC
42. Amantana A, Iversen PL. Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers. Curr Opin
Pharmacol 2005;5:550-5. DOI PubMed
43. Renneberg D, Bouliong E, Reber U, Schümperli D, Leumann CJ. Antisense properties of tricyclo-DNA. Nucleic Acids Res
2002;30:2751-7. DOI PubMed PMC
44. Goyenvalle A, Leumann C, Garcia L. Therapeutic potential of tricyclo-DNA antisense oligonucleotides. J Neuromuscul Dis
2016;3:157-67. DOI PubMed PMC
45. Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-
substituted polyamide. Science 1991;254:1497-500. DOI PubMed
46. McMahon BM, Mays D, Lipsky J, Stewart JA, Fauq A, Richelson E. Pharmacokinetics and tissue distribution of a peptide nucleic
acid after intravenous administration. Antisense Nucleic Acid Drug Dev 2002;12:65-70. DOI PubMed
47. Lennox KA, Behlke MA. A direct comparison of anti-microRNA oligonucleotide potency. Pharm Res 2010;27:1788-99. DOI
PubMed
48. Jearawiriyapaisarn N, Moulton HM, Buckley B, et al. Sustained dystrophin expression induced by peptide-conjugated morpholino
oligomers in the muscles of mdx mice. Mol Ther 2008;16:1624-9. DOI PubMed PMC
49. Hammond SM, Hazell G, Shabanpoor F, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in
spinal muscular atrophy. Proc Natl Acad Sci U S A 2016;113:10962-7. DOI PubMed PMC
50. Tajik-Ahmadabad B, Polyzos A, Separovic F, Shabanpoor F. Amphiphilic lipopeptide significantly enhances uptake of charge-neutral
splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts. Int J Pharm 2017;532:21-8. DOI
PubMed
51. Hangeland JJ, Flesher JE, Deamond SF, Lee YC, Ts'O PO, Frost JJ. Tissue distribution and metabolism of the [32P]-labeled
oligodeoxynucleoside methylphosphonate-neoglycopeptide conjugate, [YEE(ah-GalNAc)3]-SMCC-AET-pUmpT7, in the mouse.
Antisense Nucleic Acid Drug Dev 1997;7:141-9. DOI PubMed
52. Maier MA, Yannopoulos CG, Mohamed N, et al. Synthesis of antisense oligonucleotides conjugated to a multivalent carbohydrate
cluster for cellular targeting. Bioconjug Chem 2003;14:18-29. DOI
53. Debacker AJ, Voutila J, Catley M, Blakey D, Habib N. Delivery of oligonucleotides to the liver with GalNAc: from research to
registered therapeutic Drug. Mol Ther 2020;28:1759-71. DOI PubMed PMC
54. Schlegel MK, Janas MM, Jiang Y, et al. From bench to bedside: improving the clinical safety of GalNAc-siRNA conjugates using
seed-pairing destabilization. Nucleic Acids Res 2022;50:6656-70. DOI PubMed PMC
55. Gennemark P, Walter K, Clemmensen N, et al. An oral antisense oligonucleotide for PCSK9 inhibition. Sci Transl Med
2021;13:eabe9117. DOI
56. Angeli E, Nguyen TT, Janin A, Bousquet G. How to make anticancer drugs cross the blood-brain barrier to treat brain metastases. Int
J Mol Sci 2019;21:22. DOI PubMed PMC
57. Kawasaki AM, Casper MD, Freier SM, et al. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-
resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem 1993;36:831-41. DOI PubMed
58. Seth PP, Siwkowski A, Allerson CR, et al. Short antisense oligonucleotides with novel 2'-4' conformationaly restricted nucleoside
analogues show improved potency without increased toxicity in animals. J Med Chem 2009;52:10-3. DOI PubMed
59. Shen W, De Hoyos CL, Sun H, et al. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in
mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res 2018;46:2204-17. DOI PubMed
PMC
60. Burel SA, Hart CE, Cauntay P, et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1
dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 2016;44:2093-109. DOI PubMed PMC
61. Kasuya T, Hori S, Watanabe A, et al. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer
antisense oligonucleotides. Sci Rep 2016;6:30377. DOI PubMed PMC
62. Alterman JF, Godinho BMDC, Hassler MR, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene
expression throughout the central nervous system. Nat Biotechnol 2019;37:884-94. DOI PubMed PMC
63. . Dicerna. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA. US Pat; 2019. 1-
240.
64. Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther 2020;5:101. DOI PubMed PMC
65. Elkayam E, Parmar R, Brown CR, et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5΄ end of the guide strand augments
gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res 2017;45:3528-36. DOI PubMed PMC
66. Brown CR, Gupta S, Qin J, et al. Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates. Nucleic Acids Res
2020;48:11827-44. DOI PubMed PMC
67. Kel'in AV, Zlatev I, Harp J, et al. Structural basis of duplex thermodynamic stability and enhanced nuclease resistance of 5'-C-Methyl
Pyrimidine-Modified Oligonucleotides. J Org Chem 2016;81:2261-79. DOI PubMed