Page 41 - Read Online
P. 41
Page 32 of 35 Scherman. Rare Dis Orphan Drugs J 2023;2:12 https://dx.doi.org/10.20517/rdodj.2023.01
68. Schlegel MK, Janas MM, Jiang Y, et al. From bench to bedside: improving the clinical safety of GalNAc-siRNA conjugates using
seed-pairing destabilization. Nucleic Acids Res 2022;50:6656-70. DOI PubMed PMC
69. Quan D, Obici L, Berk JL, et al. Impact of baseline polyneuropathy severity on patisiran treatment outcomes in the APOLLO trial.
Amyloid 2023;30:49-58. DOI
70. Ranasinghe P, Addison ML, Dear JW, Webb DJ. Small interfering RNA: discovery, pharmacology and clinical development-an
introductory review. Br J Pharmacol 2022. DOI PubMed
71. Wei Y, Li X, Lin J, et al. Oral Delivery of siRNA Using fluorinated, small-sized nanocapsules toward anti-inflammation treatment.
Adv Mater 2023;35:e2206821. DOI PubMed
72. Busignies V, Arruda DC, Charrueau C, et al. Compression of Vectors for Small Interfering RNAs Delivery: Toward Oral
Administration of siRNA Lipoplexes in Tablet Forms. Mol Pharm 2020;17:1159-69. DOI
73. Fattal E, Bochot A. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev
2006;58:1203-23. DOI PubMed
74. Scherman D, Rousseau A, Bigey P, Escriou V. Genetic pharmacology: progresses in siRNA delivery and therapeutic applications.
Gene Ther 2017;24:151-6. DOI PubMed
75. Khoury M, Escriou V, Courties G, et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA
lipoplexes. Arthritis Rheum 2008;58:2356-67. DOI
76. Courties G, Baron M, Presumey J, et al. Cytosolic phospholipase A2α gene silencing in the myeloid lineage alters development of
Th1 responses and reduces disease severity in collagen-induced arthritis. Arthritis Rheum 2011;63:681-90. DOI
77. Available from: Orphanet: https://www.orpha.net/consor/cgi-bin/Disease.php?lng=EN [Last accessed on 29 May 2023].
78. Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in duchenne muscular dystrophy: the
importance of the secondary therapies. Exp Cell Res 2022;410:112968. DOI PubMed
79. Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell
1988;53:219-28. DOI PubMed
80. Tennyson CN, Klamut HJ, Worton RG. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally
spliced. Nat Genet 1995;9:184-90. DOI PubMed
81. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients
bearing partial deletions of the DMD locus. Genomics 1988;2:90-5. DOI PubMed
82. Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ, Den Dunnen JT. Entries in the Leiden Duchenne muscular
dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve
2006;34:135-44. DOI PubMed
83. Aartsma-Rus A, Fokkema I, Verschuuren J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular
dystrophy mutations. Hum Mutat 2009;30:293-9. DOI
84. Neri M, Rossi R, Trabanelli C, et al. The genetic landscape of dystrophin mutations in Italy: a nationwide study. Front Genet
2020;11:131. DOI PubMed PMC
85. Goyenvalle A, Vulin A, Fougerousse F, et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science
2004;306:1796-9. DOI
86. Denti MA, Rosa A, D'Antona G, et al. Chimeric adeno-associated virus/antisense U1 small nuclear RNA effectively rescues
dystrophin synthesis and muscle function by local treatment of mdx mice. Hum Gene Ther 2006;17:565-74. DOI PubMed
87. Stein CA. Eteplirsen Approved for duchenne muscular dystrophy: the FDA faces a difficult choice. Mol Ther 2016;24:1884-5. DOI
PubMed PMC
88. Flanigan KM, Voit T, Rosales XQ, et al. Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with
Duchenne muscular dystrophy: results of a double-blind randomized clinical trial. Neuromuscul Disord 2014;24:16-24. DOI
PubMed PMC
89. Deng J, Zhang J, Shi K, Liu Z. Drug development progress in duchenne muscular dystrophy. Front Pharmacol 2022;13:950651.
DOI PubMed PMC
90. Melki J, Lefebvre S, Burglen L, et al. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science
1994;264:1474-7. DOI
91. Lefebvre S, Bürglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell
1995;80:155-65. DOI
92. Finkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical
trials. Neurology 2014;83:810-7. DOI PubMed PMC
93. Kaufmann P, McDermott MP, Darras BT, et al; Muscle Study Group (MSG); Pediatric Neuromuscular Clinical Research Network for
Spinal Muscular Atrophy (PNCR). Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology 2012;79:1889-97.
DOI PubMed PMC
94. Rochette CF, Gilbert N, Simard LR. SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids:
SMN2 is unique to Homo sapiens. Hum Genet 2001;108:255-66. DOI PubMed
95. Burlet P, Bürglen L, Clermont O, et al. Large scale deletions of the 5q13 region are specific to Werdnig-Hoffmann disease. J Med
Genet 1996;33:281-3. DOI PubMed PMC
96. Wirth B, Brichta L, Schrank B, et al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased